DTE Energy Company - Water Security 2019 ### W0. Introduction ### W_{0.1} ### (W0.1) Give a general description of and introduction to your organization. DTE Energy (NYSE: DTE) is a diversified U.S. energy company with approximately \$14.2 billion in revenue for 2018. Our largest operating subsidiaries are DTE Electric Co., an electric utility, and DTE Gas Co., a natural gas utility. DTE Electric is a Michigan corporation organized in 1903 and is a public utility subject to regulation by the Michigan Public Service Commission (MPSC) and the Federal Energy Regulatory Commission (FERC). DTE Electric is engaged in the generation, purchase, distribution and sale of electricity to approximately 2.2 million customers in southeast Michigan. DTE Gas is a Michigan corporation organized in 1898 and is a public utility subject to regulation by the MPSC. DTE Gas is engaged in the purchase, storage, transmission, gathering, distribution and sale of natural gas to approximately 1.3 million customers throughout Michigan and the sale of storage and transportation capacity. Our other businesses are involved in 1) natural gas pipelines, gathering and storage; 2) power and industrial projects; and 3) energy marketing and trading operations. More information on DTE Energy, including our Corporate Citizenship Report, can be found at: DTEenergy.com. ### W-EU0.1a (W-EU0.1a) Which activities in the electric utilities sector does your organization engage in? Electricity generation Distribution ### W-EU0.1b # (W-EU0.1b) For your electricity generation activities, provide details of your nameplate capacity and the generation for each power source. | | Nameplate capacity (MW) | % of total nameplate capacity | Gross generation (MWh) | |---------------------|-------------------------|-------------------------------|------------------------| | Coal – hard | 6153 | 49.28 | 28440814 | | Lignite | 0 | 0 | 0 | | Oil | 325 | 2.6 | 88511 | | Gas | 2957 | 23.68 | 2876595 | | Biomass | 321 | 2.57 | 487886 | | Waste (non-biomass) | 0 | 0 | 0 | | Nuclear | 1161 | 9.3 | 7358490 | | Geothermal | 0 | 0 | 0 | | Hydroelectric | 1054 | 8.44 | 20934 | | Wind | 451 | 3.61 | 2790885 | | Solar | 65 | 0.52 | 96571 | | Other renewable | 0 | 0 | 0 | | Other non-renewable | 0 | 0 | 0 | | Total | 12487 | 100 | 42160686 | # W0.2 CDP Page 1 of 57 # (W0.2) State the start and end date of the year for which you are reporting data. | | Start date | End date | |----------------|----------------|------------------| | Reporting year | January 1 2018 | December 31 2018 | # W0.3 (W0.3) Select the countries/regions for which you will be supplying data. United States of America # W0.4 (W0.4) Select the currency used for all financial information disclosed throughout your response. USD ### W0.5 (W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported. Companies, entities or groups in which an equity share is held # W0.6 (W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure? Yes # W0.6a # (W0.6a) Please report the exclusions. | Exclusion | Please explain | |--|--| | Electric
Distribution
Operations | DTE Energy is focusing on the company's largest sources of water withdrawal and use; namely, our steam electric power generating stations and company headquarters. These generating stations operate under the authority of National Pollutant Discharge Elimination System (NPDES) permits and local sanitary sewer permits, where applicable to industrial wastewater. The company does not track all types of water inputs and outputs for its electric distribution centers or electric transmission facilities. In addition, the company does not report water discharged from its electrical manholes and vaults. The water use at these types of facilities is significantly less than that of the steam electric power generating stations. Geographically, DTE is only reporting on Michigan operations. | | Gas
Distribution,
Transmission,
and Storage
Operations | DTE Energy is focusing on the company's largest sources of water withdrawal and use; namely, our steam electric power generating stations and company headquarters. These generating stations operate under the authority of NPDES permits, and local sanitary sewer permits, where applicable to industrial wastewater. The company does not track all types of water inputs and outputs for its gas distribution, transmission and storage operations. The water use at these types of facilities is significantly less than that of the steam electric power generating stations. The one exception to this exclusion is Taggart Compressor Station. This facility holds a NPDES Permit and therefore is included in the disclosure. Geographically, DTE is only reporting on Michigan operations. | | Service
Centers, Call
Centers and
Office
Buildings | DTE Energy is focusing on the company's largest sources of water withdrawal and use; namely, our steam electric power generating stations and company headquarters. These generating stations operate under the authority of NPDES permits, and local sanitary sewer permits, where applicable to industrial wastewater. The company does not track all types of water inputs and outputs for its service centers, call centers and office buildings. The water use at these types of facilities is significantly less than that of the steam electric power generating stations. In general, the source of water at these facilities is purchased from local municipalities. The one exception to this exclusion is the water use information at the corporate headquarters in Detroit, MI. Geographically, DTE is only reporting on Michigan operations. | | Non-Utility
Operations | DTE Energy is focusing on the company's largest sources of water withdrawal and use; namely, our steam electric power generating stations and company headquarters. These generating stations operate under the authority of NPDES permits, and local sanitary sewer permits, where applicable to industrial wastewater. The company does not track all types of water inputs and outputs for its non-utility operations such as power & industrial projects and energy trading services. Geographically, DTE is only reporting on Michigan operations. | | Utility
Operations | DTE Energy is minority owner of a pumped storage facility in Michigan; this plant generates electricity and is regulated. Operations and water reporting for this facility is performed by the majority owner, therefore it is excluded from this questionnaire. Geographically, DTE is only reporting on Michigan operations. | # W1. Current state # W1.1 # (W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business. | | Direct use
importance
rating | Indirect
use
importance
rating | Please explain | |---|------------------------------------|---|---| | Sufficient
amounts
of good
quality
freshwater
available
for use | Vital | Important | Direct: Sufficient amounts of good quality freshwater are vital for non-contact cooling at our steam electric generating plants as currently designed. We could not supply electricity, an essential product for customers, without this resource. Additionally, water quality is a significant concern, as certain chemicals in water can affect operations through pipe and condenser tube corrosion. We have measures in place to resolve issues related to small changes in water
quality. For example, DTE uses certain polymers to reduce conductivity of water before it is used in steam electric generating plants. In the future, with the transition of the power generation base, including the reduction in coal power generation, and the increase in renewable power generation, the importance of direct use of water will decrease from vital to important. Indirect: Sufficient amounts of good quality freshwater are required at facilities throughout the DTE Energy organization. Municipal water supply for employee use is necessary to support all our operations. Additionally, freshwater is necessary for the production and processing of fuel used for the company's power generating plants. In terms of DTE's supply chain, reduction in the company's use of coal as a fuel source in the future (2023 & 2040) will make water a less important aspect of the fuel supply process. | | Sufficient
amounts
of
recycled,
brackish
and/or
produced
water
available
for use | Important | Neutral | Direct: Sufficient amounts of recycled water are required for non-contact cooling at two of our steam electric generating plants (Fermi 2 and Greenwood). These two plants represent approximately 25% of DTE's water use, giving it the direct use rating of "important". Indirect: Although the indirect use of recycled, brackish and/or produced water has not been formally evaluated, it is estimated that this water input is not a significant part of the value chain for DTE. Freshwater availability is not a concern, giving recycled water an importance rating of "neutral." | CDP Page 3 of 57 # (W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored? | | % of | Please explain | |--|-----------------------------|--| | Water
withdrawals –
total volumes | sites/facilities/operations | Of the 13 facilities included in this disclosure, 100% are measured and monitored for withdrawal volumes. Total withdrawals are calculated from circulation pump nameplate capacity and pump run time for surface water sources, and through metering for municipal water sources. Most withdrawals are in the form of noncontact cooling water for our electric generating facilities. These fresh water withdrawals are measured and monitored for monthly NPDES reporting, as well as annual water use reporting for the state of Michigan. These reports are required by federal and state regulations, and reflects continuous monitoring. | | Water
withdrawals –
volumes from
water stressed
areas | Not relevant | Most withdrawals are not from water stressed areas. There are seven electric generating stations and one natural gas compressor station that withdraw fresh water from the Michigan Great Lakes, which are located in the St. Lawrence watershed, a relatively water abundant area. Based on the WRI's Aqueduct Water Risk Atlas for electric power, some of DTE's sites have been mapped as medium to high risk, with much of Michigan being low to medium risk. However, little weighting should be given to the "Baseline Water Stress" category for Michigan because of the low likelihood of withdrawals affecting the abundant supply. Thus, our sites are located in mostly low-medium risk areas. Additionally, water stress in DTE's operational areas is expected to remain the same in the next 10 years per the Atlas' projections. | | Water
withdrawals –
volumes by
source | 76-99 | Of the 13 facilities included in this disclosure, 99% are measured and monitored for water withdrawals by source. Total withdrawals are calculated from circulation pump nameplate capacity and pump run time for surface water sources, and through metering for municipal water sources. Most withdrawals are in the form of noncontact cooling water for our electric generating facilities. These fresh water withdrawals from the Great Lakes basin are measured and monitored for monthly NPDES reporting, as well as annual water use reporting for the state of Michigan. These reports are required by federal and state regulations. Other surface water withdrawals are made for dust control purposes, primarily at electric generation and coal processing facilities. These withdrawals are typically not measured or monitored. Other withdrawals are from ground water, rainwater and municipal water supplies; these withdrawals may not be measured, and account for <1% of the total. | | Entrained water
associated with
your metals &
mining sector
activities - total
volumes [only
metals and
mining sectors] | <not applicable=""></not> | <not applicable=""></not> | | Produced water
associated with
your oil & gas
sector activities
- total volumes
[only oil and
gas sector] | <not applicable=""></not> | <not applicable=""></not> | | Water
withdrawals
quality | 100% | Of the 13 facilities included in this disclosure, 100% are measured and monitored for water withdrawals quality. We monitor water withdrawal quality at the facility level for monthly NPDES reporting. For example, per NPDES permit requirements, at all our plants, we measure temperature of intake waters continuously. Mercury is monitored quarterly as a requirement of the Pollutant Minimization Program (PMP). | | Water
discharges –
total volumes | 100% | Of the 13 facilities included in this disclosure, 100% are measured and monitored for water discharge volumes. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. Most of discharges are in the form of noncontact cooling water from our electric generating facilities. These discharges are measured and monitored for monthly NPDES reporting, as well as annual water use reporting for the state of Michigan. These reports are required by federal and state regulations. For example, the River Rouge Power Plant can discharge a maximum of 654.6 MGD of treated processed water and an unspecified amount of stormwater through the main outfall. The NPDES permit requires daily monitoring of flow. | | Water
discharges –
volumes by
destination | 100% | Of the 13 facilities included in this disclosure, 100% are measured and monitored for water discharge volumes by destination. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. Most discharges are in the form of noncontact cooling water from our electric generating facilities to surface waters. These discharges are returned to surface waters, and are measured and monitored for monthly NPDES reporting, as well as annual water use reporting for the state of Michigan. These reports are required by federal and state regulations. | | Water
discharges –
volumes by
treatment
method | 76-99 | On Site Treatment: Of the 13 facilities included in this disclosure, most discharges (76-99%) are associated with our electric generating facilities, and are treated on site with various methods (e.g. chemical clarification, plain clarification, oil/water separation). Off Site Treatment: The remaining discharges are largely associated with the potable water needs or our facilities, and are treated by independent off-site municipal treatment plants or private treatment storage & disposal facilities (TSDF). These discharges are returned to surface waters in most cases, and are measured/monitored by the offsite facility. | | Water discharge quality – by standard effluent parameters | 76-99 | On Site Treatment: Water quality standards for the most of discharges are provided in the NPDES permits associated with our electric generating facilities. Of the 13 facilities included in this disclosure, this represents 76-99%. The NPDES program is administered by the State of Michigan where most discharges take place. Off Site Treatment: Water quality standards for the remaining discharges are governed by the permits associated with the municipal treatment plants or private TSDFs. These facilities have NPDES permits of their own in most cases. | CDP Page 4 of 57 | | % of
sites/facilities/operations | Please explain | |---|-------------------------------------
--| | Water
discharge
quality –
temperature | 76-99 | Most discharges are in the form of noncontact cooling water from our electric generating facilities, representing 76-99% of the 13 facilities included in this disclosure. Temperatures of these discharges are measured and monitored for monthly NPDES reporting, as well as the calculation of the thermal discharge. These reports are required by federal and state regulation. Discharge temperature is not monitored for DTE headquarters, which discharges to the city sewer. | | Water
consumption –
total volume | 76-99 | Most consumption (76-99%) is calculated for our electric generating facilities and reported annually to the State of Michigan. Consumption for these operations are neither measured nor monitored directly. However, measured and monitored data is used in the formulas for calculating water consumption, which is accepted industry practice. This figure represents the evaporative loss, which is calculated for each facility using average monthly heat input, and regional and seasonal coefficients for evaporative loss; these values are then added and reported as total consumption for the company. The consumption volume is associated with other operations such as potable water needs, groundwater withdrawal/discharges, and dust control, which we do not monitor. | | Water recycled/reused | 1-25 | Cooling water is recycled at two of our steam electric generating plants (Fermi 2 and Greenwood). These two plants represent approximately 15% of the 13 sites included in this disclosure. Recirculation pump capacity is multiplied by the number of hours of operation to determine the amount of water recycled/reused. | | The provision of
fully-
functioning,
safely managed
WASH services
to all workers | 100% | Fully functioning Water Supply, Adequate Sanitation and Hygiene (WASH) is provided for all workers throughout the organization. Our operations are located in well-developed areas with modern facilities where WASH is readily available. WASH services are metered for billing purposes, which are mainly provided by local municipalities. | # W-EU1.2a # (W-EU1.2a) For your hydroelectric operations, what proportion of the following water aspects are regularly measured and monitored? | | % of sites/facilities/operations measured and monitored | | |--|---|--| | Fulfilment of downstream environmental flows | Not monitored | DTE Energy is minority owner of a pumped storage facility in Michigan; this plant generates electricity and is regulated. Operations and water reporting for this facility is performed by the majority owner, therefore it is excluded from this questionnaire. | | Sediment loading | Not monitored | DTE Energy is minority owner of a pumped storage facility in Michigan; this plant generates electricity and is regulated. Operations and water reporting for this facility is performed by the majority owner, therefore it is excluded from this questionnaire. | | Other, please specify | Not monitored | DTE Energy is minority owner of a pumped storage facility in Michigan; this plant generates electricity and is regulated. Operations and water reporting for this facility is performed by the majority owner, therefore it is excluded from this questionnaire. | # W1.2b CDP Page 5 of 57 # (W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year? | | Volume
(megaliters/year) | | Please explain | |----------------------|-----------------------------|----------------|---| | Total
withdrawals | 4291312 | About the same | The thresholds for comparison to previous years are as follows: >50% change = "Much Lower"/"Much Higher", 25-50% change = "Lower"/"Higher", and <25% change = "About the Same." Total withdrawals are calculated from circulation pump nameplate capacity and pump run time for surface water sources, and through metering for municipal water sources. The amount of withdrawal in 2018 was approximately 5% higher than in 2017 (4,098,319 ML). DTE is in the process of retiring several coal-fired power plants, which will result in less total future withdrawals in the company's operations. | | Total
discharges | 4215364 | About the same | Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The amount of discharge in 2018 was approximately 5% higher than in 2017 (4,025,951 ML). DTE is in the process of closing several coal-fired power plants, which will result in less total future withdrawals in the company's operations. | | Total
consumption | 77275 | About the same | This figure represents the evaporative loss, which is calculated for each facility using average monthly heat input, and regional and seasonal coefficients for evaporative loss; these values are then added and reported as total consumption for the company. The amount of consumption in 2018 was approximately 5% higher than in 2017 (73,667 ML). Major changes to total consumption are not anticipated in the near future; however, climate change may significantly affect evaporative loss on a longer timeline. | # W1.2h # (W1.2h) Provide total water withdrawal data by source. | | Relevance | Volume
(megaliters/year) | Comparison
with
previous
reporting
year | Please explain | |--|-----------------|-----------------------------|---|---| | Fresh surface
water, including
rainwater, water
from wetlands,
rivers, and lakes | Relevant | <not applicable=""></not> | <not
Applicable></not
 | Sufficient amounts of good quality freshwater are relevant because they are used for non-contact cooling at our steam electric generating plants as currently designed. We could not supply electricity, an essential product for customers, without this resource. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from pump capacity and run time. For example, the Monroe Power Plant withdraws water from Lake Erie, the magnitude of which is not directly measured, but calculated through the method described above. The amount of fresh surface water withdrawal in 2018 was approximately 5% higher than in 2017 (4,096,104). DTE is in the process of retiring several coal-fired power plants, which will result in less fresh surface water withdrawals in the company's operations. | | Brackish surface water/Seawater | Not
relevant | <not applicable=""></not> | <not
Applicable></not
 | Withdrawal from brackish surface water/seawater is not part of our operations, and we do not expect it to be part of our operations in the future. | | Groundwater – renewable | Relevant | <not applicable=""></not> | <not
Applicable></not
 | One facility, Sibley Quarry, withdraws from groundwater. The amount withdrawn in 2018 was approximately 3% higher than in 2017 (2,022 ML). Withdrawal from groundwater is calculated from pump capacity and run time. | | Groundwater – non-renewable | Not
relevant | <not applicable=""></not> | <not
Applicable></not
 | Withdrawal from groundwater - non-renewable sources is not part of our operations, and we do not expect it to be part of our operations in the future. | | Produced/Entrained water | Not
relevant | <not
applicable=""></not> | <not
Applicable></not
 | Withdrawal from produced/entrained water is not part of our operations, and we do not expect it to be part of our operations in the future. | | Third party sources | Relevant | <not applicable=""></not> | <not
Applicable></not
 | Two facilities, Greenwood Energy Center and Company Headquarters, withdraw water from municipal sources, making it relevant to our operations. Withdrawal volumes are measured through water metering. The amount withdrawn in 2018 was approximately 202% higher than in 2017 (193 ML). In 2017, water from a county drain was used as an additional source for Greenwood but not measured. In 2018, only municipal water was used as a source, accounting for the higher volumes. | # W1.2i CDP Page 6 of 57 # (W1.2i) Provide total water discharge data by destination. | | Relevance | Volume
(megaliters/year) | | Please explain | |---------------------------------------|-----------------|-----------------------------|---------------------------------|--| | Fresh surface
water | Relevant | <not applicable=""></not> | <not
Applicable></not
 | Discharge by destination is calculated by subtracting the estimated fresh surface water consumption from the estimated water withdrawn. The amount of discharge in 2018 was approximately 5% higher than in 2017 (4,025,773). As water withdrawals decrease in the company's future due to diversifying DTE's power generation fleet, discharges are also expected to decrease. | | Brackish
surface
water/seawater | Not
relevant | <not applicable=""></not> | <not
Applicable></not
 | Discharge to brackish surface water/seawater is not part of our operations. DTE does not project including this as part of our operations in the future. | | Groundwater | Not
relevant | <not applicable=""></not> | <not
Applicable></not
 | Discharge to groundwater is not accounted for as part of our operations. DTE does not project including this as part of our operations in the future. | | Third-party destinations | Relevant | <not applicable=""></not> | <not
Applicable></not
 | While many DTE facilities discharge to municipal/industrial wastewater treatment systems, we actively measure the discharge from three facilities: Fermi 2 Power Plant (30 ML), River Rouge Power Plant (24 ML), and the Company Headquarters (144 ML). For Company Headquarters, magnitude of discharge is equivalent to withdrawal. For plants, discharge is determined by an estimation using the number of discharge pumps and the run time. The amount of discharge reported in 2018 is approximately 11% higher than the amount discharged in 2017 (178 ML). In the future, it is expected that municipal/industrial discharges will stay the same or decrease due to a company-wide reduction strategy. | # W1.2j # (W1.2j) What proportion of your total water use do you recycle or reuse? | | % | Comparison | Please explain | |----------|----------|----------------|--| | | recycled | with | | | | and | previous | | | | reused | reporting | | | | | year | | | Row
1 | 11-25 | About the same | Water is being recycled and reused at the Fermi 2 Power Plant and Greenwood Energy Center. In 2018, 25% of the water withdrawn was recycled, 5% lower than in 2017 (30%). Percentage was calculated using the CDP calculation method. Recirculation pump capacity is multiplied by the number of hours of operation to determine the amount of water recycled/reused. The Fermi 2 Power Plant incorporates evaporative loss in this calculation; however, the Greenwood Energy Center does not incorporate evaporative loss. | # W-EU1.3 (W-EU1.3) Do you calculate water intensity for your electricity generation activities? Yes # W1.4 (W1.4) Do you engage with your value chain on water-related issues? Yes, our suppliers Yes, our customers or other value chain partners # W1.4a CDP Page 7 of 57 (W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent? #### Row 1 ### % of suppliers by number 1-25% ### % of total procurement spend <Not Applicable> ### Rationale for this coverage The proportion of suppliers that receive surveys corresponds to approximately 25% of total procurement spend. Suppliers are selected for engagement based on the following criteria: If the supplier has a DTE Supplier Performance Management (SPM) scorecard, if they are a top 100 supplier for DTE spend, or if a DTE sustainability team member's business unit requests that the supplier take the survey. This selection process identifies the suppliers that are most impactful and significant to the organization. Suppliers are requested to report on water use to measure success of actions and identify areas of improvement throughout DTE's supply chain. DTE uses the results of the survey when making final decisions on supplier selection, giving suppliers incentive to report on water management and stewardship. ### Impact of the engagement and measures of success <Not Applicable> ### Comment Survey questions vary by industry (e.g., for construction, questions focus on minimizing water use in water-challenged areas and implementing stormwater management plans). Metrics are requested to supplement responses; however, they are not required at this time. In 2019, DTE intends to change the TSP survey to require metrics where water conservation measures are claimed by suppliers. More information on EUISSCA and TSP can be found at: https://www.euissca.org/the-sustainability-project.html. ### W1.4b ### (W1.4b) Provide details of any other water-related supplier engagement activity. # Type of engagement Incentivizing for improved water management and stewardship # **Details of engagement** <Not Applicable> ### % of suppliers by number <Not Applicable> ### % of total procurement spend <Not Applicable> ### Rationale for the coverage of your engagement The proportion of suppliers that receive surveys corresponds to approximately 25% of total procurement spend. Suppliers are selected for engagement based on the following criteria: If the supplier has a DTE Supplier Performance Management (SPM) scorecard, if they are a top 100 supplier for DTE spend, or if a DTE sustainability team member's business unit requests that the supplier take the survey. This selection process identifies the suppliers that are most impactful and significant to the organization. Suppliers are requested to report on water use to measure success of actions and identify areas of improvement throughout DTE's supply chain. DTE uses the results of the survey when making final decisions on supplier selection, giving suppliers incentive to improve water management and stewardship. ### Impact of the engagement and measures of success <Not Applicable> # Comment <Not Applicable> ### W1.4c # (W1.4c) What is your organization's rationale and strategy for prioritizing engagements with customers or other partners in its value chain? Our rationale is to maintain open channels of communication with employees, government agencies, public officials, the media, and the public to meet their information needs regarding energy and environmental issues. We participate with government agencies and others in framing responsible laws, regulations, and standards affecting the community, our customers, employees, and the environment. We partner with over 15 private organizations and government agencies including Wildlife Habitat Council, The Nature Conservancy, Friends of the Detroit River, and other water and wildlife conservation organizations. DTE works with these organizations because of their shared dedication to water/wildlife conservation, and the opportunity to collaborate with like-minded individuals. One method of engagement is the DTE Energy Green Team, a company-wide organization of employees, retirees, family members, and friends who volunteer their time to work on environmental projects on our properties and in the communities we serve. The team engages with Detroit River International Wildlife Refuge, Friends of the Detroit River, and other organizations through volunteer work and community outreach. Customers and other partners in our value chain recognize DTE Energy as an organization on the front lines of environmental sustainability. Success of this type of engagement is measured through the extent of exposure to other organizations and agencies, the number of positive environmental actions implemented, and public perceptions of DTE. Our Environmental Policy, conservation initiatives, and partnerships are also available for the public to view on our website. ## W2. Business impacts ### W2.1 (W2.1) Has your organization experienced any detrimental water-related
impacts? Yes ### W2.1a CDP Page 9 of 57 # (W2.1a) Describe the water-related detrimental impacts experienced by your organization, your response, and total financial impact. #### Country/Region United States of America #### **River basin** St. Lawrence #### Type of impact driver Regulatory ### **Primary impact driver** Tighter regulatory standards ### **Primary impact** Increased compliance costs ### **Description of impact** Revised Effluent Limitation Guidelines (ELGs) for steam electric plants were finalized on September 30, 2015. New limits imposed a substantive financial burden to the company, and were one of many contributing factors to several plant closures. The most significant changes were the requirements to cease discharge of bottom ash transport water (BATW) and fly ash transport water and perform enhanced treatment of flue gas de-sulfurization (FGD) wastewater. Closing plants required the company to invest in new base load generation. The revised ELGs will only impact plants that will continue to operate beyond the latest compliance date. The impact will be in the form of both capital and operation/maintenance costs. In late 2017, a new ELG rule was issued that resulted in the postponement of compliance dates for BATW and FGD waste water until new requirements can be developed and issued. The postponement lends uncertainty to the company's strategy for complying with the ELGs as we currently do not know what the new requirements for BATW and FGD waste water will be. Fly ash transport water requirements from the 2015 Rule are still in effect. It is expected that the rule will be finalized in 2019. This impact is detrimental to the Company because additional capital investment may impact customer rates. ### **Primary response** Engage with regulators/policymakers ### **Total financial impact** 9100000 ### **Description of response** For fly ash transport water, compliance with ELG requirements begins as early as 11/1/2018, but no later than 12/31/2023. However, the costs for compliance have already begun in the form of technology evaluations, testing and engineering. With the postponement in place as previously described, the length of impact for BATW and FGD wastewater is uncertain. The total exact financial impact is unknown; the number reported represents estimated 2018 capital expenses related to ELG and 316(b) compliance. The Company is currently evaluating a suite of technologies that would give us compliance with the ELGs. We are forecasting significant expenses in 2020 and later years. DTE's response to regulatory impacts improves water security for the Company by ensuring environmental regulatory compliance, which protects water sources. Another detrimental cost is related to the revised 316(b) regulations of the Clean Water Act for cooling water intake structures (CWIS). The substantial effort to comply with the revised regulations is expected to result in tighter operational performance for CWIS at the applicable facilities. # W2.2 (W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations? No # W3. Procedures # W-EU3.1 # (W-EU3.1) How does your organization identify and classify potential water pollutants associated with your business activities in the electric utilities sector that could have a detrimental impact on water ecosystems or human health? Water pollutants are identified and classified as part of the application process for the National Pollutant Discharge Elimination System (NPDES) permit. As part of the permitting process the State of Michigan requires us to assess water quality parameters specific to our industry. We must also comply with regulatory requirements related to accidental spills and other incidents related to release of hazardous materials at our facilities. In addition, we conduct environmental impact assessments as part of our licensing process for plants. DTE categorizes pollutants into two groups based on toxicity level (i.e., toxic pollutants and other pollutants). The assessment of overall impact includes chronic/acute toxicity, persistence, and bioaccumulation. For example, at DTE Trenton Channel Power Plant canals and drains receiving our discharge are protected for agricultural uses, navigation, industrial water supply, public water supply in areas with designated public water supply intakes, warm-water fish, other indigenous aquatic life and wildlife, partial body contact recreation, and fish consumption. For toxic pollutants at this plant, the volume of canals and drains used to ensure that effluent limitations are sufficiently stringent to meet Water Quality Standards is 25% of the applicable design flow of the receiving stream. The Company updates thresholds based on changes to NPDES permit requirements. ### W-EU3.1a # (W-EU3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants associated with your activities in the electric utilities sector on water ecosystems or human health. | Potential
water
pollutant | Description
of water
pollutant
and
potential
impacts | Management
procedures | Please explain | |---------------------------------|---|---------------------------------|---| | Coal
combustion
residuals | <not
Applicable></not
 | <not
Applicable></not
 | We comply with NPDES permits, develop and implement Storm Water Pollution Prevention Plans (SWPPP), Spill Prevention, Control & Countermeasure (SPCC) Plans, and other incident response plans. These procedures manage risks of impacts by applying treatment methodologies appropriate for controlling TSS and pH. The success of these procedures is evaluated by regular monitoring of discharges after treatment. DTE also uses dry ash for beneficial reuse, and has initiated compliance with the new coal combustion residuals (CCR) rules by closing unlined bottom ash impoundments and ash ponds. | | Radiation | <not
Applicable></not
 | <not
Applicable></not
 | Experience has shown that, during normal operations, nuclear power plants typically release only a small fraction of the radiation allowed by the NRC's established limits. The radioactive material that fuels a nuclear power plant is contained in ceramic fuel pellets that are capable of withstanding thousands of degrees of heat. These fuel pellets are then encased in hollow metal rods that help keep the material from interacting with the water that cools the reactor. In addition, the reactor's thick metal walls and piping, as well as a massive reinforced concrete containment structure, are designed to keep the coolant, fuel, and associated radiation isolated from the environment. Our nuclear power plant, Fermi 2, adheres to stringent regulations of the U.S. Nuclear Regulatory Commission (NRC), in addition to robust internal standards and procedures. The NRC reviews a reactor license application to address detrimental environmental impacts. NRC publishes this in its Environmental Impact Statement and provides ways to mitigate these impacts. DTE ensures that Fermi 2 complies with radiation dose limitations and monitors radiation release; reports can be found by the general public on the NRC website. The procedures identified manage risk by minimizing radiation released to the environment through compliance measures. As stated, the success of these procedures is evaluated by regular monitoring of discharges, such as required periodic fish studies in waters surrounding the Fermi 2 Power Plant. | | Contaminated cooling water | <not
Applicable></not
 | <not
Applicable></not
 | Cooling water contamination is prevented by following operation and maintenance procedure and complying with NPDES permit limits and specifications. These procedures manage risk by limiting contamination. The success of these procedures is evaluated by regular monitoring of discharges. For example, chlorine is used in cooling water systems to control biological growth, and total residual chlorine is monitored on a regular basis. | | Thermal pollution | <not
Applicable></not
 | <not
Applicable></not
 | Thermal effluents are regulated because heat is defined as a pollutant under Clean Water Act (CWA) Section 502(6). DTE has performed thermal plume studies for power plants with identified risk. We comply
with NPDES permits that authorize any thermal effluent discharge. This compliance manages risk by monitoring any negative impacts thermal pollution can have on aquatic ecosystems and whether action should be taken to minimize the pollution. The success of these procedures is evaluated by regular monitoring of discharges. | | Other, please specify | <not
Applicable></not
 | <not
Applicable></not
 | We comply with NPDES permits that set up monitoring requirements and limits for mercury. We also developed and implement Pollution Minimization Plans (PMPs) for mercury. These procedures manage risks by reviewing the sources on a semi-annual basis and controlling mercury sources as feasible. The success of these procedures is evaluated by regular monitoring and reporting of discharges. | ### W3.3 CDP Page 11 of 57 ### (W3.3) Does your organization undertake a water-related risk assessment? Yes, water-related risks are assessed ### W3.3a # (W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks. ### **Direct operations** ### Coverage Partial #### Risk assessment procedure Water risks are assessed as a standalone issue #### Frequency of assessment Annually ### How far into the future are risks considered? 3 to 6 years ### Type of tools and methods used International methodologies Other ### Tools and methods used Internal company methods Other, please specify (ISO 14001) #### Comment DTE conducts annual spill plan reviews, monthly environmental compliance reviews, annual corporate environmental compliance audits, and self-assessment audits conducted in conformance with ISO 14001. Coverage is partial because water-related risk assessment is limited to only the utility sector of our operations. # **Supply chain** # Coverage Partial # Risk assessment procedure Water risks are assessed as a standalone issue ### Frequency of assessment Annually ### How far into the future are risks considered? 3 to 6 years # Type of tools and methods used Other ### Tools and methods used Internal company methods Other, please specify (The Sustainability Project (TSP) supplier survey tool) ### Comment DTE is part of the Electric Utility Industry Sustainable Supply Chain Alliance (EUISSCA), an organization of utilities and suppliers collaborating to advance sustainability best practices in supply chain activities and supplier networks. Water use for suppliers is self-reported via The Sustainability Project (TSP) supplier survey tool, which was launched in 2018. Survey questions vary by industry and are used to assess water-related risks for our supply chain. DTE uses this information to measure success of actions and identify opportunities for improvement across the Company's supply chain. Coverage is partial because the TSP survey is sent to only a portion of our suppliers, as identified in section W1.4a. # Other stages of the value chain # Coverage None # Risk assessment procedure <Not Applicable> # Frequency of assessment <Not Applicable> # How far into the future are risks considered? <Not Applicable> # Type of tools and methods used <Not Applicable> # Tools and methods used <Not Applicable> ### Comment Water-related risks are not assessed for other stages of the value chain. # W3.3b # (W3.3b) Which of the following contextual issues are considered in your organization's water-related risk assessments? | | Relevance
&
inclusion | Please explain | |---|------------------------------------|---| | Water availability at a basin/catchment level | Relevant,
sometimes
included | Water availability is important to our operations, particularly for cooling water use; however, we operate in a region where water is readily available. DTE uses the MI Withdrawal Assessment Tool when evaluating new large quantity withdrawal projects to determine the potential impact on nearby water resources. | | Water quality at a basin/catchment level | Relevant,
always
included | Water quality is relevant to operations because DTE aims to reduce environmental impact and avoid noncompliance when discharging water. Water quality is assessed by meeting regulatory requirements and avoiding uncontrolled releases. | | Stakeholder conflicts
concerning water
resources at a
basin/catchment level | Relevant,
sometimes
included | Stakeholder concerns are relevant to operations because DTE aims to be community-minded and consider all stakeholders and water uses when using water resources. On an as-needed basis, we will engage with stakeholders on water issues. For example, DTE engages with stakeholders by responding to complaints from the public regarding potential water impacts. | | Implications of water on
your key
commodities/raw
materials | Not
considered | Implications of water on key commodities/raw materials is not considered. | | Water-related regulatory frameworks | Relevant,
always
included | Water regulatory risk is a key driver for our operations. Regulations shape the nature of our power generation fleet, and the Company's policies and procedures are based on these regulations. | | Status of ecosystems and habitats | Relevant,
always
included | Impacts on ecosystems are included in permit application/assessments, and voluntary habitat preservation and restoration is a priority for the company. For example, the Company adjusts the design of new projects to avoid or limit impacts on wetlands, and effectively manage stormwater. | | Access to fully-
functioning, safely
managed WASH services
for all employees | Relevant,
always
included | Employee safety is a number one priority for the company and providing access to fully functioning safety requirements related to water is essential. DTE's safety department ensures that water provided at our facilities adheres to drinking water standards. | | Other contextual issues, please specify | Not
considered | Other contextual issues are not considered. | # W3.3c CDP Page 13 of 57 ### (W3.3c) Which of the following stakeholders are considered in your organization's water-related risk assessments? | | | Please explain | |---|------------------------------------|---| | | &
inclusion | | | Customers | Relevant,
sometimes
included | Customers are included in risk assessment to maintain DTE's reputation of providing reliable and efficient energy to our customers. Generally, the company's use of water does not directly impact customers; however, we will engage customers as necessary if a water risk involves potential customer impact. | | Employees | Relevant,
always
included | Employees are included in risk assessment to ensure workplace safety. Employee training and attention to water-related aspects are key to minimizing water risks. Through the implementation of our ISO 14001 certified Environmental Management System, employees become aware of water-related aspects and risks and are instrumental in controlling these risks. | | Investors | Relevant,
sometimes
included | Investors are considered in risk assessment to increase confidence in investment return and improve DTE's capital acquisition. Investor reaction to water risk, as well as overall environmental risks, for the company are considered at an enterprise level. However, water risks do not receive the same attention from investors as other environmental risks, such as carbon emissions. | | Local
communities | Relevant,
always
included | Local communities are considered in risk assessment because our water use and discharges can potentially impact local communities that use these waters. We partner with over 15 private organizations and government agencies including Wildlife Habitat Council, The Nature Conservancy, Friends of the Detroit River, and other water and wildlife conservation organizations. DTE engages with Detroit River International Wildlife Refuge, Friends of the Detroit River, and other organizations through volunteer work and community outreach. We work with local regulatory agencies to meet required water standards. The risks and impacts to these communities are considered during risk assessment discussions. | | NGOs | Relevant,
sometimes
included | Because our water use and discharges potentially impact local communities and we work with agencies on water permits, NGOs get involved with the permit review process and are considered in risk assessment. Risks from NGO engagement are considered during water permit application periods and/or when NGOs choose to engage with the company. | | Other water
users at a
basin/catchment
level | Not
considered | Other water users at a basin/catchment level are not considered. | | Regulators | Relevant,
always
included | Regulators are considered in risk
assessment because regulations drive much of our water risk and can result in increased costs, changes in operations, and upgrades to infrastructure. Risks of non-compliance with these regulations is a key driver performing a risk assessment. For example, DTE may engage with regulators to negotiate favorable limits/allocation in reference to potential new water regulations. | | River basin
management
authorities | Relevant,
sometimes
included | River basin management authorities are considered in risk assessment to decrease the potential of water conflicts. It's not clear what river basin management authorities should be considered in a risk assessment for our region. We engage with the U.S. Army Corps of Engineers on projects related to dredging or navigation channels and we would evaluate risks related to these projects on an as needed case by case basis. | | Statutory
special interest
groups at a
local level | Relevant,
sometimes
included | Tribes or International Joint Commission (IJC) are considered in risk assessment to decrease the potential of water conflicts. Tribes or IJC may engage us in specific water issues that may arise on a case by case basis related to our water use and quality of water discharges. | | Suppliers | Relevant,
always
included | Suppliers are considered in risk assessment to ensure sufficient supply of goods and services. We require all our suppliers to meet the environmental regulatory requirements and comply with sustainable design and construction practices. We engage with suppliers through an annual supplier survey requesting information about water efficiency measures. | | Water utilities at a local level | Relevant,
always
included | Our facilities discharge to locally-owned water utilities and are required to meet pre-treatment standard prior to discharge. DTE considers water utilities at a local level in risk assessment because the potential to exceed these standards are a significant risk to the company. | | Other
stakeholder,
please specify | Not
considered | Other stakeholders are not considered. | # W3.3d (W3.3d) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain. DTE considers regulatory risks, reputational risks, availability risks, and natural disaster risks that create water-related risks. DTE uses the WRI Aqueduct Water Risk Atlas to assess relevant water-related risks for the electric power industry currently, as well as projected conditions. Risk of drought and baseline water stress (availability risks) are given little weight because of the abundant water supply of the Great Lakes system. DTE conducts annual spill plan reviews, monthly environmental compliance reviews, annual corporate environmental compliance audits, and self-assessment audits conducted in conformance with ISO 14001. DTE makes decisions relating to risk response by using cost-benefit analyses, considering investor objectives, and environmental impact. CDP Page 14 of 57 #### W4.1 (W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business? Yes, both in direct operations and the rest of our value chain ### W4.1a ### (W4.1a) How does your organization define substantive financial or strategic impact on your business? Most of our operations and supply chain takes place in Michigan, which has an abundant fresh water supply. The risks to our company are significant at this time, (e.g. as regulations continue to change and challenge our industry); however; DTE is mitigating these risks through transitioning its electricity generation fleet to less water intensive technologies, such as renewables and combined cycle natural gas. DTE defines substantive impact as a legislative, regulatory, or physical change in supply that would reduce our ability to withdraw the amount of water needed to produce adequate amount of electricity for our customers. Additionally, the definition extends to any financial and strategic impact that an investor would deem substantive, and DTE aims to maintain a reputation of sound risk assessment and management among its investors. For example, extreme weather conditions are identified as a risk in our 2018 10-K Annual Report, which we would consider a substantive financial or strategic impact if it caused damage to the electric distribution system infrastructure and power generation facilities. The 2019 Polar Vortex is an example of an event we would consider substantive. Damage to facilities due to cold weather impacts daily operations relating to water availability and usability. Recovering from these setbacks would result in increased costs from unforeseen maintenance to our power generation facilities to improve water usability, therefore negatively impacting the financial performance of the company. DTE does not define specific numerical thresholds for substantive water-related impact. # W4.1b (W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent? | | number
of
facilities
exposed | %
company-
wide
facilities
this
represents | Comment | |----------|---------------------------------------|---|---| | Row
1 | 8 | 51-75 | DTE considers the following a facility: company headquarters, electric power generating stations, and all sites that hold NPDES permits (the 13 sites included in this disclosure). A facility exposed to water risk is defined as one that has the capacity to withdraw over 100,000 gallons of water per day (GPD) or has a surface water withdrawal permit by the State of Michigan. There are seven electric generating stations and one natural gas compressor station that withdraw fresh water from the Michigan Great Lakes, which are located in the St. Lawrence watershed. All 8 facilities are in the eastern United States, a relatively water abundant area. Because DTE draws from the Great Lakes system, water risk is significantly lower than any water risk present in the western U.S. region. | ### W4.1c CDP Page 15 of 57 (W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive impact on your business, and what is the potential business impact associated with those facilities? #### Country/Region United States of America #### River basin St. Lawrence ### Number of facilities exposed to water risk 8 # % company-wide facilities this represents 51-75 ### Production value for the metals & mining activities associated with these facilities <Not Applicable> ### % company's annual electricity generation that could be affected by these facilities 51-75 # % company's global oil & gas production volume that could be affected by these facilities <Not Applicable> ### % company's total global revenue that could be affected 26-50 #### Comment All eight units (seven electric generating stations and one natural gas compressor station) that withdraw fresh water from the Michigan Great Lakes are located in the St. Lawrence watershed. This represents 62% of the 13 facilities included in this disclosure. A significant decrease in the water level within the watershed could put these facilities at risk of damage or losing production. The amount of generation or production capacity lost by a significant change in the water level within the watershed could range from 0% to 69% depending on the nature of the event or situation. For example, a significant drop in water level in the Great Lakes could result in the loss of cooling water, and therefore generation or production, at one or all the facilities. DTE's response would be to increase focus on diversifying its power generation fleet to reduce water reliance, and exploring alternative options for water supply. This percentage divides the power generation from the 8 facilities by the power generation from DTE's entire generation fleet, including renewable energy, natural gas, and hydroelectric power. The revenue generated by these 8 facilities represents 37% of our global revenue. Great Lakes water levels rise and fall on a cyclical basis over decades. Currently, they are at an all-time high, but were at record lows 20 years ago. DTE has adjusted to these cyclical fluctuations by incorporating measures, such as dredging of intakes during low water levels to counteract these changes. ### W4.2 (W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks. # Country/Region United States of America ### **River basin** St. Lawrence ### Type of risk Physical ### Primary risk driver Other, please specify (Effects of climate change and drought) # **Primary potential impact** Increased capital costs # **Company-specific description** Changing water levels could require restructuring of
cooling water intake structures (CWIS) and plant discharge structures. Unpredictable variations in temperature and weather patterns because of climate change can adversely impact operations through alternating levels of precipitation and potential drought. Secondary impacts could include changes in financial distribution leading to monetary stressors on the organization through unintended remediation, process inefficiency, and unplanned outages. Great Lakes water levels rise and fall on a cyclical basis over decades. Currently, they are at an all-time high, but were at record lows 20 years ago. DTE has adjusted to these cyclical fluctuations by incorporating measures, such as dredging of intakes during low water levels to counteract these changes. ### **Timeframe** Unknown # **Magnitude of potential impact** Low #### Likelihood Likely ### Are you able to provide a potential financial impact figure? No, we do not have this figure ### Potential financial impact figure (currency) <Not Applicable> ### Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> ### **Explanation of financial impact** The financial impact has not been quantified financially. For DTE's operations, the major financial impact would be from the company's response to changing water levels at plant intakes and discharges. ### Primary response to risk Engage with regulators/policymakers #### **Description of response** DTE would engage with public policy makers and would increase capital expenditure to address infrastructure inadequate for the new conditions. By updating infrastructure, the company can be better prepared to mitigate water risk as it pertains to electric production for customers. Engagement and response to changes in water availability is immediate. The timeframe to see consequences of climate change is unknown. Although water availability concern due to climate change is apparent in other parts of the U.S., we do not expect a large impact in the Great Lakes region and we do not expect a need for a response to this risk in the immediate future. Engaging with policy makers would strengthen our process of managing future impacts through identifying potential impacts, planning, and applying best practices. ### **Cost of response** ### **Explanation of cost of response** The cost of response is not quantified at the corporate level. DTE expects that the major costs would be related to updating infrastructure to account for new conditions. Increased engagement with policy makers would not have significant cost, but could be very effective in sharing best practices for the power generation industry and for working to reduce costs to our customers. ### Country/Region United States of America ### **River basin** St. Lawrence ### Type of risk Regulatory # Primary risk driver Mandatory water efficiency, conservation, recycling or process standards ### **Primary potential impact** Increased operating costs ### **Company-specific description** The company may have to change its operations (e.g. reduce intake and output) in order to meet mandatory requirements. DTE is already in the process of transitioning from coal-fired generation to more generation from renewable sources and natural gas. As this transition occurs, water use will decrease, keeping in line with any potential water conservation measures in future. # **Timeframe** Unknown ### **Magnitude of potential impact** Unknown ### Likelihood Unlikely ### Are you able to provide a potential financial impact figure? No, we do not have this figure ### Potential financial impact figure (currency) <Not Applicable> # Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> # **Explanation of financial impact** This impact has not been quantified financially. ### **Primary response to risk** Comply with local regulatory requirements # **Description of response** The company would endeavor to negotiate favorable limits, but would ultimately comply with the regulatory requirements, which may result in increased operating costs. ### **Cost of response** # **Explanation of cost of response** This response is not quantified. Cost of negotiations would be minimal; however, major changes to infrastructure to meet regulatory requirements would require significant capital. Operating costs would increase as the company would endeavor to reduce water withdrawal magnitude and output. # Country/Region United States of America ### **River basin** St. Lawrence ### Type of risk Regulatory ### Primary risk driver Regulation of discharge quality/volumes # **Primary potential impact** Increased compliance costs # **Company-specific description** Clean Water Act regulations related to 316(b) for cooling water intake structures, and effluent limitation guidelines (ELG) for wastewater discharges, will require substantive physical and operational changes at our steam electric generating stations. In addition, the revised coal combustion residuals (CCR) rule requires extensive changes to wastewater systems at some of our facilities. ### **Timeframe** 1 - 3 years ### **Magnitude of potential impact** High ## Likelihood Virtually certain # Are you able to provide a potential financial impact figure? Yes, a single figure estimate # Potential financial impact figure (currency) ### Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> ### **Explanation of financial impact** It is estimated that capital expenses associated with ELG and 316(b) compliance will be 6.1 million for 2019, and will increase further in 2020 and beyond. The financial impact for the CCR rule has not been quantified for water-related expenses. #### Primary response to risk Comply with local regulatory requirements #### **Description of response** The company has engaged with public policy makers, has engaged with suppliers to evaluate new technologies, increased capital expenditure, and increased investment in new technology to be able to comply with the regulatory requirements. ### Cost of response 6100000 ### **Explanation of cost of response** The company has evaluated the impact of the CCR rules and is in the process of coming into compliance. Strategies to address the revised 316(b) rules and the revised ELGs are underway. The financial impact for the CCR rule has not been quantified for water-related expenses. It is estimated that capital expenses associated with ELG and 316(b) compliance will be 6.1 million for 2019, and will increase further in 2020 and beyond. Increased expenditure to explore new technologies is the main cost associated with this response, which may be substantial as DTE implements these technologies to comply with regulations. # Country/Region United States of America #### River basin St. Lawrence ### Type of risk Regulatory ### Primary risk driver Increased difficulty in obtaining withdrawals/operations permit # **Primary potential impact** Increased operating costs # **Company-specific description** The company may have to change its operations (e.g. reduce water withdrawal) in order to meet revised limits to water withdrawal. ### **Timeframe** Unknown ### **Magnitude of potential impact** Unknown # Likelihood Unlikely # Are you able to provide a potential financial impact figure? No, we do not have this figure # Potential financial impact figure (currency) <Not Applicable> ### Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> ### **Explanation of financial impact** Although a specific financial impact figure is unknown, DTE expects that the greatest financial impact would be related to rethinking, redesigning, and implementing power generating processes to minimize the use of water (i.e., DTE's response to the risk). Further financial impact would result from supplementing surface water withdrawals with withdrawals from municipal sources. Direct financial impact because of permit obtainment difficulties is not anticipated. ### Primary response to risk Comply with local regulatory requirements ### **Description of response** DTE foresees this as a potential future risk, but does not consider it an immediate risk at this time. The company would endeavor to negotiate favorable limits/allocation, but would ultimately comply with the regulatory requirements, which may result in increased operating costs. ### **Cost of response** ### **Explanation of cost of response** Complying with regulatory requirements would include rethinking current processes to reduce water withdrawal, and implementing those solutions. The cost of the response would mainly be associated with upgrades, additions, and restructuring of our current power generating processes. Additionally, if DTE were to supplement surface water withdrawals with withdrawals from municipal sources, this would also increase costs. #### Country/Region United States of America #### **River basin** St. Lawrence ### Type of risk Physical ### Primary risk driver Flooding ### **Primary potential impact** Reduction or disruption in production capacity # **Company-specific description** Changing water levels could require restructuring of cooling water intake structures (CWIS) and plant discharge structures. Unpredictable variations in temperature and weather patterns because of climate change can adversely impact operations through alternating levels of precipitation and potential flooding. Secondary impacts could include changes in financial distribution leading to monetary stressors on the organization through unintended remediation, process inefficiency, and unplanned outages. Great Lakes water levels rise and fall on a cyclical basis over decades. Currently, they are at an all-time high, but were at
record lows 20 years ago. DTE has planned for these cyclical fluctuations in its operations. ### **Timeframe** Unknown ### **Magnitude of potential impact** Low # Likelihood Likely # Are you able to provide a potential financial impact figure? No, we do not have this figure # Potential financial impact figure (currency) <Not Applicable> ### Potential financial impact figure - minimum (currency) <Not Applicable> ## Potential financial impact figure - maximum (currency) <Not Applicable> # **Explanation of financial impact** This impact has not been quantified financially. # Primary response to risk Develop flood emergency plans ### **Description of response** In response to a noncompliance due to flooding, the Company notifies the state and emergency response management while coordinating with contractors to remediate any impact. Flooding can result in process inefficiency, infrastructure damage, and unplanned outages, which could disrupt production capacity. ### **Cost of response** ### **Explanation of cost of response** Cost of response not quantified at corporate level. ### Country/Region United States of America #### **River basin** St. Lawrence ### Type of risk Physical ### Primary risk driver Ecosystem vulnerability ### **Primary potential impact** Reduction or disruption in production capacity ### Company-specific description DTE considers ecosystem vulnerability a risk to disruption of production capacity. For example, at the Trenton Channel Power Plant, water temperature of discharged waters is a concern as it relates to aquatic life. This risk is mitigated through NPDES permit obligations by monitoring and reporting for water temperature. ### **Timeframe** Unknown ### **Magnitude of potential impact** Low ### Likelihood Unlikely ### Are you able to provide a potential financial impact figure? No, we do not have this figure ### Potential financial impact figure (currency) <Not Applicable> # Potential financial impact figure - minimum (currency) <Not Applicable> # Potential financial impact figure - maximum (currency) <Not Applicable> # **Explanation of financial impact** The cost of response is not quantified at corporate level; however, DTE expects that the implementation of upgraded/new technologies will be the main cost associated with this risk. ### Primary response to risk Other, please specify (Conduct studies monitoring impact on aquatic ecosystem) ### **Description of response** The Company conducts studies that monitor the impact of operations on aquatic species and uses this data to inform its decisions. # **Cost of response** # **Explanation of cost of response** The cost of response is not quantified at corporate level; however, DTE expects that the implementation of upgraded/new technologies will be the main cost associated with this risk. (W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks. ### Country/Region United States of America #### River basin St. Lawrence #### Stage of value chain Supply chain ### Type of risk Physical ### Primary risk driver Increased water scarcity ### **Primary potential impact** Supply chain disruption ### Company-specific description Water scarcity would contribute to a potential decrease in fuel supply (e.g., from coal mining or natural gas production) required for power generation. This decrease would disrupt DTE's supply chain. #### **Timeframe** Unknown ### Magnitude of potential financial impact Medium ### Likelihood Unlikely ### Are you able to provide a potential financial impact figure? No, we do not have this figure # Potential financial impact figure (currency) <Not Applicable> # Potential financial impact figure - minimum (currency) <Not Applicable> # Potential financial impact figure - maximum (currency) <Not Applicable> # **Explanation of financial impact** Although a specific financial impact figure is unknown, DTE expects that the greatest financial impact would be related to rethinking, redesigning, and implementing power generating processes to minimize reliance on fuel sources affected by water scarcity. DTE expects that costs for fuel in this instance would increase, creating further financial impact. # Primary response to risk Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers # **Description of response** DTE does not foresee water scarcity as an anticipated risk in the near future; however, we would respond by implementing alternative solutions for fuel supply in power generation operations. For example, further investment in renewable energy sources would reduce reliance on coal, as well as the risk of water scarcity as it affects our supply chain. # **Cost of response** # **Explanation of cost of response** The cost of the response would mainly be associated with upgrades, additions, and restructuring of our current power generating processes. ### Country/Region United States of America #### River basin St. Lawrence ### Stage of value chain Supply chain ### Type of risk Physical ### Primary risk driver Seasonal supply variability/inter annual variability # **Primary potential impact** Increased operating costs #### Company-specific description Seasonal variability affects water levels, which in turn impacts fuel supply. Water regulations may change related to the coal and natural gas industries as a result. As a result of decreased fuel supply, cost of fuel could potentially increase. ### **Timeframe** Unknown ### Magnitude of potential financial impact Unknown ### Likelihood Unlikely ### Are you able to provide a potential financial impact figure? No, we do not have this figure ### Potential financial impact figure (currency) <Not Applicable> ### Potential financial impact figure - minimum (currency) <Not Applicable> # Potential financial impact figure - maximum (currency) <Not Applicable> # **Explanation of financial impact** Although a specific financial impact figure is unknown, DTE expects that the greatest financial impact would be related to rethinking, redesigning, and implementing power generating processes to minimize reliance on fuel supply affected by seasonal variability (i.e., DTE's response). DTE expects that costs for fuel in this instance would increase, creating further financial impact. ### Primary response to risk Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers # **Description of response** DTE does not foresee seasonal variability as a major risk in the near future; however, we would respond by implementing alternative solutions for fuel supply in power generation operations. As the company moves toward closing down coal-fired plants and exploring alternative fuel sources, we expect to reduce this risk even further. ### Cost of response ### **Explanation of cost of response** The cost of the response would mainly be associated with upgrades, additions, and restructuring of our current power generating processes. ### W4.3 (W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business? Yes, we have identified opportunities, and some/all are being realized (W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business. ### Type of opportunity Products and services ### **Primary water-related opportunity** Reduced impact of product use on water resources ### Company-specific description & strategy to realize opportunity DTE defines substantive impact as legislation or a physical change in supply that would affect our ability to withdraw the water needed to produce electricity for our customers. Additionally, the definition extends to any financial and strategic impact that an investor would deem substantive, and DTE aims to maintain a reputation of sound risk assessment and management among its investors. The company owns and operates a coal management facility located on Lake Superior known as Midwest Energy Resources Company (MERC). MERC is marketed as a resource for the Company and external clients. MERC services the Company and other clients with coal supply needs. The Great Lakes provides a means of shipping coal to Company-owned power plants and other clients; this provides both cost savings and sales opportunities. Power plants are the main facilities to benefit from this opportunity directly; however, cost savings would have a company-wide impact, making it a strategic opportunity. ### Estimated timeframe for realization Current - up to 1 year ### Magnitude of potential financial impact High ### Are you able to provide a potential financial impact figure? No, we do not have this figure ### Potential financial impact figure (currency) <Not Applicable> # Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> ### **Explanation of financial impact** This impact has not been quantified financially; however, it would have a large financial impact because most of our power generation facilities benefit from coal supplied from this facility. # Type of opportunity Efficiency ### Primary water-related opportunity Improved water efficiency in operations ### Company-specific description & strategy to realize opportunity Water efficiency in operations is expected to increase as DTE pursues the opportunity of diversifying its generation fleet. The company will close three coal burning power plants by 2023, and increase the percentage of renewable energy sources. For example, since 2008, DTE has developed 13 wind parks and has spent \$170 million developing 31 solar arrays. More water-efficient operations would have company-wide benefits related to cost savings, but would specifically benefit
power generation operations. making it a strategic opportunity. ### Estimated timeframe for realization >6 years # Magnitude of potential financial impact Medium # Are you able to provide a potential financial impact figure? No, we do not have this figure # Potential financial impact figure (currency) <Not Applicable> ### Potential financial impact figure - minimum (currency) <Not Applicable> ### Potential financial impact figure - maximum (currency) <Not Applicable> ### **Explanation of financial impact** DTE costs for water for power generation are relatively low; however, diversifying our generation fleet will decrease both capital expenditure and fuel costs in the long term, causing moderate financial impact. # W5. Facility-level water accounting # W5.1 (W5.1) For each facility referenced in W4.1c, provide coordinates, total water accounting data and comparisons with the previous reporting year. ### **Facility reference number** Facility 1 ### Facility name (optional) Belle River Power Plant ### Country/Region United States of America ### River basin St. Lawrence ### Latitude 42.773888 # Longitude -82.495833 ### Primary power generation source for your electricity generation at this facility Coal - hard ### Oil & gas sector business division <Not Applicable> # Total water withdrawals at this facility (megaliters/year) 730430 # Comparison of withdrawals with previous reporting year About the same # Total water discharges at this facility (megaliters/year) 722119 # Comparison of discharges with previous reporting year About the same # Total water consumption at this facility (megaliters/year) 7744 ### Comparison of consumption with previous reporting year About the same # Please explain The withdrawal, discharge, and consumptive use of water were about the same in 2018 compared to 2017. The thresholds for comparison to previous years are as follows: >50% change = "Much Lower"/"Much Higher", 25-50% change = "Lower"/"Higher", and <25% change = "About the Same." Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The Belle River Power Plant is expected to be retired by 2030; therefore, withdrawals, consumption, and discharge will trend downward and then go to 0 once the plant is retired. DTE owns 81% of the Belle River Power Plant; however, values reported here encompass the entire plant. # Facility reference number Facility 2 ### **Facility name (optional)** Connors Creek Power Plant #### Country/Region United States of America #### River basin St. Lawrence ### Latitude 42.355556 ### Longitude -82.961388 ### Primary power generation source for your electricity generation at this facility Not applicable ### Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 0 # Comparison of withdrawals with previous reporting year About the same # Total water discharges at this facility (megaliters/year) 6 # Comparison of discharges with previous reporting year Much lower # Total water consumption at this facility (megaliters/year) 0 ### Comparison of consumption with previous reporting year About the same # Please explain Withdrawal and consumptive used is zero and shows no change in 2018 compared to 2017. This facility no longer generates electric power and is in the process of being retired. The discharge amount is the amount of water removed from the basements of the plant (groundwater infiltration), which dropped 50%. In the next year, discharge is expected to fall to zero as retiring is completed. # **Facility reference number** Facility 3 # Facility name (optional) Fermi 2 Power Plant # Country/Region United States of America ### **River basin** St. Lawrence # Latitude 41.9625 ### Longitude -83.25833 ### Primary power generation source for your electricity generation at this facility Nuclear ### Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 56119 ### Comparison of withdrawals with previous reporting year About the same ### Total water discharges at this facility (megaliters/year) 31133 # Comparison of discharges with previous reporting year About the same ### Total water consumption at this facility (megaliters/year) 25016 # Comparison of consumption with previous reporting year About the same # Please explain Water withdrawal, consumption, and discharges show little change in 2018 compared to 2017. Water withdrawal is determined by adding discharge and consumption values. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated through a calculation involving the number of pumps and the run time. The Fermi 2 Power Plant is expected to remain at current levels in its water use in the future. ### **Facility reference number** Facility 4 ### Facility name (optional) **Greenwood Energy Center** ## Country/Region United States of America ### River basin St. Lawrence ### Latitude 43.219364 ### Longitude -82.706596 ### Primary power generation source for your electricity generation at this facility Gas ### Oil & gas sector business division <Not Applicable> # Total water withdrawals at this facility (megaliters/year) 439 # Comparison of withdrawals with previous reporting year Much higher # Total water discharges at this facility (megaliters/year) 4.8 # Comparison of discharges with previous reporting year Much lower #### Total water consumption at this facility (megaliters/year) 1053 ### Comparison of consumption with previous reporting year Higher ### Please explain It should be noted that this facility's closed loop cooling water system uses both municipal water supply and local surface water for makeup. The reported withdrawal is from the municipal supply only; surface water withdrawal is not measured. Withdrawals from the municipal water source are determined through water metering. Consumptive use is calculated by multiplying the total loss rate, due to evaporation and drift, with the operating hours. Withdrawal increased approximately 898% from 2017 to 2018. Withdrawal for this facility is higher in 2018 for two reasons: (1) because the 2017 figure included water used to fill the newly expanded cooling loop, and (2) because the facility ran for more hours than it did in 2017. In 2016 the cooling loop underwent a considerable expansion. The new portion of the loop was filled in 2017 with water from the surrounding drains, in addition to the water from the municipal source. In the future, the total withdrawals for this facility should stay about the same, unless there is a significant increase in its use for power generation. This facility discharges treated process and sanitary water to fresh surface water. There was only sanitary discharge in 2018 (discharge decreased 98%), due to the new closed loop cooling water system. Consumptive use increased approximately 42% due to increased hours of operation. The actual amount of withdrawal is low when compared with the other facilities. ### **Facility reference number** Facility 5 ### **Facility name (optional)** Harbor Beach Power Plant ### Country/Region United States of America #### River basin St. Lawrence #### Latitude 43.85155 ### Longitude -82.64405 # Primary power generation source for your electricity generation at this facility Not applicable # Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 0 ### Comparison of withdrawals with previous reporting year About the same ### Total water discharges at this facility (megaliters/year) 86 # Comparison of discharges with previous reporting year About the same # Total water consumption at this facility (megaliters/year) 0 ### Comparison of consumption with previous reporting year About the same ### Please explain This facility no longer generates electric power and was divested to a developer. In 2018 there were no withdrawals or consumption. The discharge is accumulated stormwater in the treatment basins. ### **Facility reference number** Facility 7 ### Facility name (optional) Monroe Power Plant ### Country/Region United States of America #### River basin St. Lawrence ### Latitude 41.893173 ### Longitude -83.346132 ### Primary power generation source for your electricity generation at this facility Coal - hard ### Oil & gas sector business division <Not Applicable> # Total water withdrawals at this facility (megaliters/year) 2103642 ### Comparison of withdrawals with previous reporting year About the same # Total water discharges at this facility (megaliters/year) 2069842 # Comparison of discharges with previous reporting year About the same # Total water consumption at this facility (megaliters/year) 34049 ### Comparison of consumption with previous reporting year About the same ### Please explain Withdrawal, discharge, and consumptive water use have remained about the same in 2018 compared to 2017. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. Withdrawals, consumption, and discharge are not expected to change significantly until the plant begins the process of shutting down in the late 2030s. ### **Facility reference number**
Facility 8 ### **Facility name (optional)** River Rouge Power Plant # Country/Region United States of America ## River basin St. Lawrence ### Latitude 42.2738 ### Longitude -83.1117 ### Primary power generation source for your electricity generation at this facility Coal - hard # Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 162088 ### Comparison of withdrawals with previous reporting year About the same ### Total water discharges at this facility (megaliters/year) 161535 ### Comparison of discharges with previous reporting year About the same ### Total water consumption at this facility (megaliters/year) 728 ### Comparison of consumption with previous reporting year About the same ### Please explain Withdrawal, discharge, and consumptive use decreased by 20-22% in 2018 compared to 2017, due to an extensive outage for maintenance of one of the two operational units. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The River Rouge Power Plant is expected to be retired by 2023; therefore, withdrawals, consumption, and discharge will trend downward and then go to 0 once the plant is retired. ### **Facility reference number** Facility 9 ### Facility name (optional) St. Clair Power Plant # Country/Region United States of America ### River basin St. Lawrence ### Latitude 42.762777 # Longitude -82.472222 ### Primary power generation source for your electricity generation at this facility Coal - hard ### Oil & gas sector business division <Not Applicable> # Total water withdrawals at this facility (megaliters/year) 1008484 # Comparison of withdrawals with previous reporting year Higher # Total water discharges at this facility (megaliters/year) 1001829 ### Comparison of discharges with previous reporting year Higher ### Total water consumption at this facility (megaliters/year) 6928 # Comparison of consumption with previous reporting year About the same # Please explain Water withdrawal and discharge increased by 30%, and consumptive use increased by 24% due to a full year's operation of St. Clair Unit 7 which experienced a fire in 2016. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The St. Clair Power Plant is expected to be retired by 2023; therefore, withdrawals, consumption, and discharge will trend downward and then go to 0 once the plant is retired. # **Facility reference number** Facility 10 ### Facility name (optional) Sibley Quarry ### Country/Region United States of America #### River basin St. Lawrence #### Latitude 42.158009 #### Longitude -83.187871 ### Primary power generation source for your electricity generation at this facility Not applicable ### Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 2081 # Comparison of withdrawals with previous reporting year About the same ### Total water discharges at this facility (megaliters/year) 2081 ## Comparison of discharges with previous reporting year About the same # Total water consumption at this facility (megaliters/year) 0 ### Comparison of consumption with previous reporting year About the same # Please explain The water withdrawal and discharge is about the same as in previous year, about 2.9% higher in 2018 compared to 2017. Sibley Quarry is a limestone quarry that is currently not being actively mined. A Type III Low Hazard Industrial Landfill is being operated in portions of the quarry that have already been mined. The quarry is currently dewatered via the quarry sump, which consists primarily of groundwater and precipitation. Pumping continues to support the landfill operations. In the future, water use for Sibley Quarry is expected to show no significant changes. Discharge rates are measured with a flow meter and withdrawals are considered equal to discharges since there is no consumptive use, just pure dewatering. # **Facility reference number** Facility 11 # Facility name (optional) **Taggart Compressor Station** ### Country/Region United States of America ### River basin St. Lawrence #### Latitude 43.442612 #### Longitude -85.143392 ### Primary power generation source for your electricity generation at this facility Not applicable # Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 8501 # Comparison of withdrawals with previous reporting year Lower # Total water discharges at this facility (megaliters/year) 8488 # Comparison of discharges with previous reporting year Lower ### Total water consumption at this facility (megaliters/year) 13 ### Comparison of consumption with previous reporting year Lower #### Please explain In 2018 water withdrawal, discharge and consumption decreased by approximately 35%, 35% and 41%, respectively. The reduction was due to implementation of a more accurate monitoring system for water intake and discharge. Also, the reduction was due to an intentional effort to shut off pumps and save costs when cooling water was not required (e.g. when gas compressors are not running). W.C. Taggart Compressor Station provides natural gas to the market areas in Detroit, Mt. Pleasant, Carson City, Greenville, Lakeview, Vine, Muskegon, Ludington, and Belding. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The Taggart Compressor Station is expected to maintain the general levels of water consumption as were recorded in 2018. ### **Facility reference number** Facility 12 ### Facility name (optional) Trenton Channel Power Plant # Country/Region United States of America ### River basin St. Lawrence ### Latitude 42.123024 ### Longitude -83.181633 ### Primary power generation source for your electricity generation at this facility Coal - hard # Oil & gas sector business division <Not Applicable> ## Total water withdrawals at this facility (megaliters/year) 219383 # Comparison of withdrawals with previous reporting year Lower ### Total water discharges at this facility (megaliters/year) 218097 ### Comparison of discharges with previous reporting year Lowe ### Total water consumption at this facility (megaliters/year) 1745 ### Comparison of consumption with previous reporting year Lower ### Please explain Water withdrawal and discharge both decreased approximately 28% from 2017 to 2018 due to extensive maintenance outages in the 2nd and 4th quarter. Water consumption decreased approximately 36% from 2017 to 2018. Water withdrawal is determined through a calculation involving river or lake intake, which is estimated from circulation pump nameplate capacity and run time. Evaporative loss is incorporated into the consumption figure; it is calculated using average monthly heat input, and regional and seasonal coefficients for evaporative loss. Discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. The St. Clair Power Plant is expected to be retired by 2023; therefore, withdrawals, consumption, and discharge will trend downward and then go to 0 once the plant is retired. ### **Facility reference number** Facility 13 ### Facility name (optional) Company Headquarters ### Country/Region United States of America ### River basin St. Lawrence ### Latitude 42.333846 ### Longitude -83.05749 # Primary power generation source for your electricity generation at this facility Not applicable # Oil & gas sector business division <Not Applicable> ### Total water withdrawals at this facility (megaliters/year) 144 ### Comparison of withdrawals with previous reporting year About the same # Total water discharges at this facility (megaliters/year) 144 # Comparison of discharges with previous reporting year About the same # Total water consumption at this facility (megaliters/year) 0 ### Comparison of consumption with previous reporting year About the same ### Please explain The total amount of withdrawal is based on invoices received from the municipal water supplier. The municipal water supplier does not provide a discrete amount of water discharged, therefore the amount of water discharged is equivalent to the amount of water withdrawn. The amount of water consumed has not been measured nor calculated for this facility. The water withdrawal and discharge has decreased by 4% from 2017. As the company adopts more water-efficient measures, such as low flow plumbing systems, the water withdrawals for this facility will continue to decrease. ### (W5.1a) For each facility referenced in W5.1, provide withdrawal data by water source. # **Facility reference number** Facility 1 # **Facility name** Belle River Power Plant ### Fresh surface water, including rainwater, water from wetlands, rivers and lakes 730430 ### Brackish surface water/seawater Λ #### **Groundwater - renewable** Λ ### **Groundwater - non-renewable** 0 ### Produced/Entrained water 0 # Third party sources 0 ### Comment This
facility withdraws water from the St. Clair River as its surface water source. Withdrawals are estimated from circulation pump nameplate capacity and run time. The facility also withdraws municipal water primarily for sanitary use, but the volume has not been reported. Based on 2018's withdrawals and future projections, surface water withdrawal is expected to stay the same for the next decade. DTE owns 81% of the Belle River Power Plant; however, values reported here encompass the entire plant. ### **Facility reference number** Facility 2 ### **Facility name** Conners Creek Power Plant ### Fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 # Brackish surface water/seawater 0 ### **Groundwater - renewable** 0 # **Groundwater - non-renewable** 0 ### Produced/Entrained water 0 # Third party sources 0 # Comment This facility no longer generates electric power and is currently being retired. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. Withdrawal volumes are expected to remain at 0. ### **Facility reference number** Facility 3 # Facility name #### Fermi 2 Power Plant # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 56119 #### Brackish surface water/seawater Λ #### Groundwater - renewable \cap ### **Groundwater - non-renewable** Λ ### Produced/Entrained water Λ ### Third party sources Λ #### Comment Fresh surface water is withdrawn from Lake Erie; the volume is determined by calculating discharge (through run time and number of discharge pumps) and adding this to the calculated consumption value. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. In future, this facility's water use is expected to remain relatively constant. ### **Facility reference number** Facility 4 ### **Facility name** Greenwood Energy Center ### Fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 # Brackish surface water/seawater 0 # **Groundwater - renewable** 0 # **Groundwater - non-renewable** 0 ### Produced/Entrained water 0 ### Third party sources 439 ### Comment This facility withdraws mostly municipal water for both cooling water make up and for sanitary use. Small amounts of fresh surface water from Jackson Drain are used as makeup water at times. The number reported only represents the amount of municipal supply that is used for cooling water purposes. This value is determined through water metering. In the future, the withdrawal volume is expected to stay the same. # **Facility reference number** Facility 5 # **Facility name** Harbor Beach Power Plant # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 ### **Brackish surface water/seawater** 0 ### **Groundwater - renewable** 0 #### Groundwater - non-renewable 0 ### Produced/Entrained water 0 ### Third party sources 0 #### Comment This facility no longer generates electric power and is in the process of being retired. This facility withdraws municipal water for sanitary use, but the volume has not been reported. This facility was sold in 2019. ### **Facility reference number** Facility 7 # **Facility name** Monroe Power Plant ### Fresh surface water, including rainwater, water from wetlands, rivers and lakes 2103642 ### Brackish surface water/seawater 0 #### **Groundwater - renewable** 0 ### **Groundwater - non-renewable** Λ ### Produced/Entrained water 0 # Third party sources 0 # Comment Monroe withdraws water from Lake Erie and River Raisin; the volume is estimated by pump nameplate capacity and run time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. The Monroe Power Plant is expected to operate until 2040. The discharge may decrease in time with the implementation of the new ELG requirements. # **Facility reference number** Facility 8 # **Facility name** River Rouge Power Plant # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 162088 # Brackish surface water/seawater 0 ### **Groundwater - renewable** 0 ### Groundwater - non-renewable 0 # Produced/Entrained water 0 # Third party sources Λ ### Comment Fresh surface water is withdrawn from Detroit River; the volume is calculated by circulation pump nameplate capacity and run time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. The River Rouge Power Plant is expected to be retired by 2023; therefore, withdrawals, consumption, and discharge will trend downward and then go to 0 once the plant is retired. #### **Facility reference number** Facility 9 #### **Facility name** St. Clair Power Plant # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 1008484 #### Brackish surface water/seawater Λ #### **Groundwater - renewable** 0 ## **Groundwater - non-renewable** Λ ## Produced/Entrained water 0 ## Third party sources 0 #### Comment Fresh surface water is withdrawn from the St. Clair River; the volume is calculated by circulation pump nameplate capacity and run time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. The St. Clair Power Plant is expected to be retired by 2023; therefore, withdrawals will trend downward and then go to 0 once the plant is retired. ## **Facility reference number** Facility 10 # **Facility name** Sibley Quarry ## Fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 ## Brackish surface water/seawater 0 # **Groundwater - renewable** 2081 #### **Groundwater - non-renewable** 0 #### **Produced/Entrained water** 0 ## Third party sources 0 # Comment Sibley Quarry withdraws water from groundwater sources; the volume is considered equal to the volume of discharged water, which is determined from the measured discharges flow rate and operation time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. In the future, withdrawals from Sibley Quarry are expected to stay the same. # **Facility reference number** Facility 11 ## **Facility name** **Taggart Compressor Station** # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 8501 #### Brackish surface water/seawater 0 #### **Groundwater - renewable** 0 #### Groundwater - non-renewable 0 #### Produced/Entrained water Λ ## Third party sources Λ #### Comment Fresh surface water is withdrawn from the First Lake and Second Lake of the Six Lakes Chain; the volume is calculated by circulation pump nameplate capacity and run time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. In the future, withdrawals from the facility are expected to remain the same. # **Facility reference number** Facility 12 #### **Facility name** Trenton Channel Power Plant # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 219383 #### Brackish surface water/seawater 0 ## **Groundwater - renewable** Ω # **Groundwater - non-renewable** 0 ## Produced/Entrained water 0 ## Third party sources 0 ## Comment Fresh surface water is withdrawn from the Detroit River; the volume is calculated by circulation pump nameplate capacity and run time. This facility withdraws municipal water primarily for sanitary use, but the volume has not been reported. The Trenton Channel Power Plant is expected to be retired by 2023; therefore, withdrawal volumes are expected to trend downward and fall to 0 once the plant is retired. # **Facility reference number** Facility 13 # **Facility name** DTE Headquarters # Fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 ## Brackish surface water/seawater 0 ## **Groundwater - renewable** Λ # Groundwater - non-renewable 0 # Produced/Entrained water ## Third party sources 144 #### Comment The total amount of withdrawal is based on invoices received from the municipal water supplier. 2018 calculations include water use from irrigation, pond, and cooling tower, which were not included in 2017 calculations. DTE projects that surface water withdrawals will continue to decrease in the future, as more water efficient systems are installed. # W5.1b ## (W5.1b) For each facility referenced in W5.1, provide discharge data by destination. #### **Facility reference number** Facility 1 ## **Facility name** Belle River Power Plant #### Fresh surface water 722119 #### Brackish surface water/Seawater Λ #### Groundwater Λ ## Third party destinations 0 # Comment Belle River discharges water to the St. Clair River; the volume is calculated by subtracting estimated consumption from estimated withdrawal. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. DTE owns 81% of the Belle River Power Plant; however, values reported here encompass the entire plant. # **Facility reference number** Facility 2 # **Facility name** Conners Creek Power Plant #### Fresh surface water 6 ## Brackish surface water/Seawater 0 ## Groundwater 0 # Third party destinations 0 ## Comment Conners Creek is in the process of being retired and discharges are minimal. They consist of groundwater and stormwater accumulating in the basement pf the plant. The plant discharges water to the Detroit River; the volume is calculated by multiplying the discharge pump flow rate with the length of time over which the discharge took place. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. #### **Facility reference number** Facility 3 ## **Facility name** #### Fermi 2 Nuclear Power Plant #### Fresh surface water 31103 #### Brackish surface water/Seawater Λ #### Groundwater n #### Third party destinations 30 #### Comment This facility discharges a portion of both process wastewater and sanitary
water to a municipal/industrial wastewater treatment plant; however, only the amount of process wastewater is reported. Water is also discharged to Lake Erie; the volume is calculated through a calculation involving the number of discharge pumps and the run time. #### **Facility reference number** Facility 4 ## **Facility name** Greenwood Energy Center #### Fresh surface water 4.8 ## Brackish surface water/Seawater 0 #### Groundwater 0 # Third party destinations 0 # Comment This facility discharges treated process and sanitary water to fresh surface water. Greenwood operates on a closed loop cooling water system, and in 2018 there was no discharge of treated process water to surface water. Treated sanitary water was discharged in May, October, and November 2018. # **Facility reference number** Facility 5 # **Facility name** Harbor Beach Power Plant ## Fresh surface water 86 #### Brackish surface water/Seawater 0 ## Groundwater 0 # Third party destinations 0 ## Comment Harbor Beach is in the process of being retired and discharges are minimal. The plant discharges water to Lake Huron; the volume calculation involves pump rates and run time. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. ## **Facility reference number** Facility 7 # **Facility name** Monroe Power Plant #### Fresh surface water 2069842 #### Brackish surface water/Seawater 0 #### Groundwater 0 # Third party destinations Λ #### Comment This facility discharges to Lake Erie; discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. ## **Facility reference number** Facility 8 ## **Facility name** River Rouge Power Plant #### Fresh surface water 161510 ## Brackish surface water/Seawater 0 ## Groundwater 0 # Third party destinations 24 ## Comment River Rouge discharges to the Detroit River; discharge is calculated by subtracting consumption from withdrawal volume. This facility also discharges a small amount of water to a Municipal Treatment Plant primarily from sanitary use. ## **Facility reference number** Facility 9 # **Facility name** St. Clair Power Plant ## Fresh surface water 1001829 #### Brackish surface water/Seawater 0 # Groundwater 0 ## Third party destinations 0 #### Comment This facility discharges to the St. Clair River; volume is determined by subtracting estimated consumption from estimated withdrawal. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. # **Facility reference number** Facility 10 # **Facility name** Sibley Quarry #### Fresh surface water 2081 #### Brackish surface water/Seawater 0 #### Groundwater 0 ## Third party destinations 0 #### Comment Sibley Quarry discharges to the Detroit River; discharge is calculated using discharge pumps capacity and run time. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. ## **Facility reference number** Facility 11 #### **Facility name** **Taggart Compressor Station** #### Fresh surface water 8488 #### Brackish surface water/Seawater Λ #### Groundwater 0 ## Third party destinations 0 ## Comment Taggart Compressor Station discharges water to the First Lake of the Six Lakes Chain; discharge is calculated by subtracting estimated total consumption from estimated total withdrawals. This facility also discharges water to a septic tank primarily from sanitary use, but the volume has not been reported. ## **Facility reference number** Facility 12 # **Facility name** Trenton Channel Power Plant ## Fresh surface water 218097 ## Brackish surface water/Seawater 0 #### Groundwater 0 ## Third party destinations 0 #### Comment Trenton Channel Power Plant discharges water to the Detroit River; volumes are calculated by subtracting estimated consumption from estimated withdrawal. This facility also discharges water to a Municipal Treatment Plant primarily from sanitary use, but the volume has not been reported. ## **Facility reference number** Facility 13 ## **Facility name** DTE Headquarters ## Fresh surface water 0 #### Brackish surface water/Seawater 0 #### Groundwater 0 ## Third party destinations 144 #### Comment The municipal water supplier does not provide a discrete amount of water discharged, therefore the amount of water discharged is estimated to be equivalent to the amount of water withdrawn. ## W5.1c (W5.1c) For each facility referenced in W5.1, provide the proportion of your total water use that is recycled or reused, and give the comparison with the previous reporting year. # **Facility reference number** Facility 3 #### **Facility name** Fermi 2 Nuclear Power Plant ## % recycled or reused 76-99% ## Comparison with previous reporting year <Not Applicable> # Please explain CDP's calculation method was used. Percentage was calculated in the following method: total water recycled and reused / (total water recycled + total water withdrawn). # **Facility reference number** Facility 4 # **Facility name** Greenwood Energy Center # % recycled or reused 76-99% ## Comparison with previous reporting year <Not Applicable> #### Please explain CDP's calculation method was used. Percentage was calculated in the following method: total water recycled and reused / (total water recycled + total water withdrawn). ## W5.1d (W5.1d) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified? # Water withdrawals - total volumes ## % verified Not verified # What standard and methodology was used? None #### Water withdrawals - volume by source #### % verified Not verified #### What standard and methodology was used? None ## Water withdrawals - quality #### % verified Not verified #### What standard and methodology was used? Water withdrawals are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) annually through water use reports to comply with the state Water Use Program. The withdrawals are not verified by an external party but are subject to state inspection. #### Water discharges - total volumes #### % verified Not verified #### What standard and methodology was used? Water withdrawals are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) annually through water use reports to comply with the state Water Use Program. The withdrawals are not verified by an external party but are subject to state inspection. # Water discharges - volume by destination #### % verified Not verified #### What standard and methodology was used? Water discharges are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) annually through water use reports to comply with the state Water Use and NPDES Permit programs. The discharges are not verified by an external party but are subject to state inspection. # Water discharges - volume by treatment method ## % verified Not verified ## What standard and methodology was used? Water discharges are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) annually through water use reports to comply with the state Water Use and NPDES Permit programs. The discharges are not verified by an external party but are subject to state inspection. ## Water discharge quality - quality by standard effluent parameters ## % verified 76-100 # What standard and methodology was used? The value of 76-100% verification represents analytical data provided by external laboratories used on a portion of the effluent parameters required by NPDES permits. The rest of the effluent parameters/data are measured by internal resources. All facilities participate in annual Discharge Monitoring Reports Quality Assurance (DMRQA) studies conducted by third parties. # Water discharge quality - temperature # % verified Not verified # What standard and methodology was used? Water discharges are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) annually through water use reports to comply with the state Water Use and NPDES Permit programs. The discharges are not verified by an external party but are subject to state inspection. # Water consumption - total volume ## % verified Not verified ## What standard and methodology was used? Water consumption values for cooling systems are reported to Michigan Environment, Great Lakes, and Energy Department (EGLE) and the Energy Information Administration (EIA) annually through water use reports. The water consumption values for cooling systems are not verified by an external party but are subject to state inspection. # Water recycled/reused #### % verified Not verified ## What standard and methodology was used? Water recycle/reuse is not verified by an external party, but it is reported to the Energy Information Administration (EIA) and it is subject to review. ## W6. Governance # W6.1 # (W6.1) Does your organization have a water policy? Yes, we have a documented water policy that is publicly available # W6.1a CDP Page 45 of 57 # (W6.1a) Select the options that best describe the scope and content of your water policy. | | Scope | Content | Please explain | |-------|--|---
--| | Row 1 | Select
facilities,
businesses,
or | Description of
business
dependency
on water
Description of
business
impact on
water
Company
water targets
and goals | DTE Energy's Environmental Policy includes components that specifically address water issues. The Environmental Policy applies to our DTE Electric and DTE Gas business units that are certified to the ISO 14001 standard for environmental management systems. The Environmental Policy is available here: https://newlook.dteenergy.com/wps/wcm/connect/dte-web/home/community-and-news/common/environmental-policies DTE's Environmental Policy includes the following statements that are specific to water: "We commit to, and hold our employees and officers accountable toStrive to eliminate unnecessary use of water in our facilities and to improve the quality of our water discharges." A materiality assessment to identify key environmental, economic, and social issues that are important to both internal and external stakeholders was completed in early 2017 and included in DTE's 2016-2017 Corporate Citizenship Report at: https://empoweringmichigan.com/dte-impact/performance/. Water was not identified as a key issue for DTE as a result of the materiality assessment, which suggests that DTE's Environmental Policy sufficiently addresses water issues for the company. Extensive time and effort is being expended to comply with the revised rules related to water (e.g. revised Effluent Limitation Guideline (ELG) requirements to cease discharge of bottom ash transport water (BATW) and fly ash transport water and perform enhanced treatment of flue gas de-sulfurization (FGD) wastewater, and tighter operational performance standards for cooling water intake structures (CWIS) per 316(b) rules). For example, detailed decision documents have been created for several facilities that will continue to operate past the final compliance date for the revised ELG rule. These decision documents provide a strategy and pathway toward meeting the compliance deadline and beyond. The company has also incorporated water usage strategy as part of an internal sustainability initiative. | # W6.2 (W6.2) Is there board level oversight of water-related issues within your organization? Yes # W6.2a # (W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues. | Please explain | |---| | | | | | Our Chairman and CEO, together with other senior leaders of the company, exercise leadership in our sustainability initiatives. They are given water- | | related responsibilities so that water initiatives are brought in from the highest level for a company-wide approach. Through the Government Regulatory | | Committee, and Force for Growth Committee and other leadership committees, DTE Energy's senior management: • Executes the company's ESG | | strategy in consultation with the Board of Directors • Manages our environmental compliance processes • Mobilizes our employees, resources and | | partner organizations to strengthen and promote prosperity in our communities • Reports to Board of Directors on outcomes of ESG initiatives • | | Manages risks associated with environmental and sustainability opportunities • Receives compensation tied to achievement of company goals, | | including ESG targets | | | # W6.2b CDP Page 46 of 57 # (W6.2b) Provide further details on the board's oversight of water-related issues. | | Frequency | Governance | Please explain | |-----|-------------|--------------------------|---| | | that water- | mechanisms | T least explain | | | related | into which | | | | | water-related | | | | a | issues are | | | | scheduled | | | | | agenda | | | | | item | | | | Row | Scheduled | Monitoring | The Public Policy and Responsibility Committee (PPRC) of the DTE Energy Board of Directors is responsible for reviewing and | | 1 | - all | implementation | advising the Board on emerging social, economic, political, reputational and environmental issues that could significantly affect | | | meetings | and | the Company's business and performance in relation to the community, shareholders, customers and employees. The PPRC's | | | | performance | responsibilities and duties include direct responsibility for water-related issues that affect the Company. The PPRC's Charter is | | | | Overseeing | available on our website and includes the following statements on Membership & Authority: 1. The Committee shall be | | | | acquisitions | composed of three or more directors as determined by the Board of Directors. Committee members are appointed for one-year | | | | and divestiture | terms and can be re-appointed for additional terms. 2. The Committee has the authority to perform the duties listed in this | | | | Overseeing | Charter, as it determines to be necessary and advisable from time to time in its business judgment. 3. The Committee shall | | | | major capital | meet as necessary, but no fewer than three times a year. The Committee shall keep minutes or other records of its meetings. 4. | | | | expenditures | The Committee has the authority to retain independent outside professional advisors or experts as it deems advisable or | | | | Reviewing and | necessary, including the sole authority to retain and terminate any such advisors or experts, to carry out its duties. The | | | | guiding annual | Committee shall have sole authority to approve related fees and retention terms. | | | | budgets | | | | | Reviewing and quiding | | | | | business plans | | | | | Reviewing and | | | | | guiding major | | | | | plans of action | | | | | Reviewing and | | | | | guiding risk | | | | | management | | | | | policies | | | | | Reviewing and | | | | | guiding | | | | | strategy | | | | | Reviewing and | | | | | guiding | | | | | corporate responsibility | | | | | strategy | | | | | Reviewing | | | | | innovation/R&D | | | | | priorities | | | | | Setting | | | | | performance | | | | | objectives | | | | | - | | # W6.3 (W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals). # Name of the position(s) and/or committee(s) Other, please specify (Vice President, Environmental Management) ## Responsibility Both assessing and managing water-related risks and opportunities # Frequency of reporting to the board on water-related issues Quarterly # Please explain The Vice President of Environmental Management & Resources manages a group that is responsible for managing compliance with environmental regulations, and assessing water-related risks and opportunities across the company. The Vice President reports directly to the COO. CDP Page 47 of 57 (W-FB6.4/W-CH6.4/W-EU6.4/W-OG6.4/W-MM6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues? Yes #### W-FB6.4a/W-CH6.4a/W-EU6.4a/W-OG6.4a/W-MM6.4a (W-FB6.4a/W-CH6.4a/W-EU6.4a/W-OG6.4a/W-MM6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)? | | Who is
entitled to
benefit
from these
incentives? | Indicator for
incentivized
performance | Please explain | |-----------------------------------|---|--
---| | Monetary
reward | Corporate
executive
team | <not
Applicable></not
 | Our CEO received 67% of his 2018 total compensation in contingent, performance-based incentives that are focused on meeting our system of corporate priorities, including environmental goals. For our other named executive officers, the average percentage of contingent, performance-based compensation was 57%. Our short-term and long-term performance metrics all tie directly to our system of priorities. The rationale for this indicator is that these are the same metrics that management uses to assess the Company's progress toward our aspiration of becoming the best-operated energy company in North America and a force for growth and prosperity in the communities where we live and serve. | | Recognition
(non-
monetary) | No one is entitled to these incentives | <not
Applicable></not
 | Non-monetary incentives are not offered. | | Other non-
monetary
reward | No one is entitled to these incentives | <not
Applicable></not
 | Other non-monetary rewards are not offered. | ## W6.5 (W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following? Yes, direct engagement with policy makers Yes, trade associations Yes, funding research organizations # W6.5a (W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments? The ISO 14001 certified systems ensure that these facilities have processes in place to meet compliance with environmental regulations. Compliance with regulations helps to influence policy that is consistent with our overall strategy for the business, including protecting the environment. Water policy and strategy for the company is managed by the Vice President of Environmental Management & Resources. # W6.6 CDP Page 48 of 57 # (W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report? Yes (you may attach the report - this is optional) # W7. Business strategy # W7.1 # (W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how? | | Are water-
related
issues
integrated? | Long-
term
time
horizon
(years) | Please explain | |---|--|---|--| | Long-
term
business
objectives | Yes, water-
related
issues are
integrated | 16-20 | A vision or objective entitled "Water Usage" was incorporated into the company's developing environmental sustainability initiative in late 2016. Water withdrawal and water consumption are currently identified as the metrics (or KPIs) for these objectives. In addition, greater regulator engagement can be secured by coming into compliance with the new ELG rule gives the Company opportunity to engage with state regulators to craft a long-term strategy that benefits all parties. Note: This rule will be finalized in 2019. DTE holds ongoing cross-functional meetings to evaluate strategies and financial impact. Our long-term strategy incorporates the goal to maintain a reliable power generation system with affordable rates for customers. An example of this is DTE's initiative to close down three coal-fired power plants by 2023, and replace these with more efficient combined-cycle plants (e.g., Blue Water Energy Center). DTE uses the ISO 14001 certified Environmental Management System to comply with, as well as exceed, regulatory requirements. For example, DTE implements green infrastructure and low flow systems at Company Headquarters and all our Service Centers as a voluntary measure. | | Strategy
for
achieving
long-term
objectives | related | 16-20 | Water resource considerations are factored into site expansions. As actions are underway to close several coal fired plants in the next 3 to 20 years, the Company is in the process of planning to construct new electric generation (e.g., Blue Water Energy Center). Several of the main considerations for this expansion are based on the availability of water and the condition of cooling water intake structures (CWIS) components at existing facilities. Also, tighter operational performance standards are put in place. One example is the company's work to comply with the revised 316(b) regulations of the Clean Water Act for cooling water intake structures (CWIS). The substantial effort to comply with the revised regulations is expected to result in tighter operational performance for CWIS at the applicable facilities. In addition, to increase reliability and affordability, DTE has expanded, and continues to expand, our renewable generation fleet specifically solar and wind generation. | | Financial planning | Yes, water-
related
issues are
integrated | 16-20 | There are increased investment opportunities related to implementing revised environmental regulations such as the 316(b) example provided above. Another investment opportunity is the effort to comply with the revised effluent limitation guideline (ELG) rule for NPDES permitted discharges. The Company is in the process of implementing strategies to comply with the new rule, and those strategies will require a substantial capital investment. Note: This rule will be finalized in 2019. Furthermore, DTE is driven by the economic benefit of renewables and continues to invest in renewable generation to improve the financial outlook of the Company. Aligning Company goals to shut down coal-fired power plants will reduce operating costs and provide a lucrative, long-term solution that is profitable for both the Company and the community. The Company mitigates financial risk by strategically selecting sites for future development to minimize impacts on natural resources, such as wetlands. DTE recognizes the fiscal advantages of adopting these solutions and considers financial impact in the Company long-term business strategy. | # W7.2 CDP Page 49 of 57 (W7.2) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year? #### Row 1 #### Water-related CAPEX (+/- % change) 152 Anticipated forward trend for CAPEX (+/- % change) 49 Water-related OPEX (+/- % change) Anticipated forward trend for OPEX (+/- % change) ## Please explain DTE increased water-related CAPEX spending by 152% in 2018 due to 316(b) and ELG. The company anticipates a 49% decrease in CAPEX spending in 2019, also due to 316(b) and ELG. Significant increases in expenses are forecasted for 2020 and beyond. DTE does not explicitly differentiate OPEX spending for water-related issues from total OPEX spending. ## W7.3 ## (W7.3) Does your organization use climate-related scenario analysis to inform its business strategy? | | Use of
climate-
related
scenario
analysis | Comment | |----------|---|---| | Row
1 | Yes | DTE has performed scenario analyses to support long-range planning for electric generation that was submitted to the Michigan Public Service Commission in the Company's Integrated Resource Plan (IRP) in March 2019. The scenario analyses for the IRP outline pathways that support DTE's emission reduction goal of reducing carbon emissions 80% from a 2005 baseline by 2040. | ## W7.3a (W7.3a) Has your organization identified any water-related outcomes from your climate-related
scenario analysis? Yes ## W7.4 # (W7.4) Does your company use an internal price on water? # Row 1 ## Does your company use an internal price on water? No, and we do not anticipate doing so within the next two years ## Please explain DTE does not plan on using an internal price on water; however the Company's water policy focuses on water reduction and reuse strategies in all projects. # W8. Targets #### W8.1 CDP Page 50 of 57 # (W8.1) Describe your approach to setting and monitoring water-related targets and/or goals. | 1 | targets | Monitoring
at
corporate
level | Approach to setting and monitoring targets and/or goals | |---|--|--|--| | | wide targets and goals Business level specific targets | Targets are monitored at the corporate level Goals are monitored at the corporate level level level level with the corporate level | Relevant targets/goals are identified by determining long-term cost-saving initiatives, improving water and energy efficiency, and driving the initiative of environmental stewardship. Targets/goals are prioritized based on the level of impact the initiative will have on the company as whole, as well as by weighing the pros and cons of pursuing the initiative. DTE considers company reputation, long-term environmental impact, efficiency of systems, initial investment cost, and return on investment payback period. Business-level specific targets and goals include reducing the number of NPDES non-compliances. Company-wide targets and goals exist around water usage and water consumption as a part of a developing environmental sustainability initiative that began in 2016, and will continue to develop in the future. | # W8.1a (W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made. # Target reference number Target 1 ## **Category of target** Water withdrawals ## Level Business activity # **Primary motivation** Corporate social responsibility # **Description of target** Reduce water withdrawal by 40% in 2023, 60% in 2030, and 90% by 2040. ## **Quantitative metric** % reduction in total water withdrawals ## Baseline year 2005 #### Start year 2017 ## **Target year** 2023 # % achieved 53 # Please explain Since 2005, DTE has reduced surface water withdrawals for power generation by 21% by retiring coal-fired power plants (e.g., Conners Creek and Harbor Beach Power Plants) that utilize water for cooling, which accomplishes 53% of our 2023 target. DTE projects that surface water withdrawals will continue to decrease in the future, as more water efficient systems are installed (e.g., Greenwood's closed loop cooling water system) and coal-fired power plants are retired. These water goals are aligned with the company's goals to reduce carbon emissions from electric generating facilities 32 percent from a 2005 baseline by 2023, 50 percent by 2030 and 80 percent by 2040. These numbers represent current projections and are subject to change in the future. ## **Target reference number** Target 2 #### Category of target Product water intensity #### Level **Business activity** #### **Primary motivation** Water stewardship #### **Description of target** Reduce water intensity (million gallons per year withdrawn divided by giga-watt hours energy produced) by 25% by 2023, 35% by 2030, and 90% by 2040. #### **Quantitative metric** % reduction per unit of production #### **Baseline** year 2005 #### Start year 2017 ## **Target year** 2023 ## % achieved 0 ## Please explain Since 2005, DTE has reduced surface water withdrawals for power generation by 21% by retiring coal-fired power plants (e.g., Conners Creek and Harbor Beach Power Plants) that utilize water for cooling. DTE projects that surface water withdrawals will continue to decrease in the future, as our generational mix transitions to renewables and natural gas, and coal-fired generation retires. This is the first year of measurement for water intensity, and % achieved is not measurable. These water goals are aligned with the company's goals to reduce carbon emissions from electric generating facilities 32 percent from a 2005 baseline by 2023, 50 percent by 2030 and 80 percent by 2040. These numbers represent current projections and are subject to change in the future. ## Target reference number Target 3 # **Category of target** Water consumption #### Level Site/facility #### **Primary motivation** Water stewardship #### **Description of target** DTE's target is to to reduce water use by 35% by 2022 at DTE Gas and Electric facilities, excluding plant operations. As part of an internal initiative, DTE aims to develop and implement a plan to reduce water consumption/impact, with primary focus on Company Headquarters. Other areas of focus will be Service Centers and the Fermi Power Plant (outside of power block). #### **Quantitative metric** % reduction in total water consumption ## **Baseline** year 2016 #### Start year 2017 Target year #### % achieved 66 #### Please explain In 2018, DTE achieved 23% reduction from 2016 levels, which accomplishes 66% of our target. #### W8.1b (W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made. #### Goal Other, please specify (Improve water stewardship culture) #### Level Company-wide #### **Motivation** Corporate social responsibility ## **Description of goal** DTE aims to improve water stewardship practices at power generating facilities, company offices, and other business units across the company. This will help achieve water security by instilling a culture of water reduction policies where possible. This goal is important to the company because water reduction initiatives are environmentally responsible and cost-saving. The company is implementing this goal company-wide by going through an environmental review process captured in the environmental change checklist for each new project, including water use and management of wastewater. Whenever possible, water reduction is accomplished through reuse/recycle options and process change. Additionally, the use of water intensive systems is monitored to decrease run time when use is not necessary. ## **Baseline** year 2016 #### Start year 2017 # **End year** 2023 # **Progress** Progress is assessed through the amount of water being reused/recycled, in addition to other measures. ## W9. Linkages and trade-offs ## W9.1 (W9.1) Has your organization identified any linkages or tradeoffs between water and other environmental issues in its direct operations and/or other parts of its value chain? Yes ## W9.1a (W9.1a) Describe the linkages or tradeoffs and the related management policy or action. # Linkage or tradeoff Linkage #### Type of linkage/tradeoff Decreased GHG emissions #### Description of linkage/tradeoff Using less carbon intensive fuels and closing coal-fired power plants will reduce GHG emissions and reduce water consumption by eliminating the need for cooling water. This has a high impact on the company and the environment. #### Policy or action In response to the global initiative of reducing greenhouse gas emissions, the Company is retiring coal-fired power plants. DTE Energy is in the process of retiring the Trenton, River Rouge, and St. Clair power plants by 2023 to reduce carbon emissions and water consumption. DTE retired the Conners Creek power plant in 2008, and Harbor Beach power plant in 2013. The retiring of these plants will reduce carbon emissions 32% by 2023, 50% by 2030 and 80% by 2040. The addition of wind and solar energy to our power generation fleet ensures that DTE continues to reliably distribute energy to its customers while reducing carbon emissions and increasing water efficiency. ## Linkage or tradeoff Linkage ## Type of linkage/tradeoff Increased biodiversity ## Description of linkage/tradeoff Reducing the use of cooling water intake structures decreases the potential of the impingement and entrainment of fish and other aquatic organisms, increasing ecosystem resilience. This has a low impact on the company and the environment, as DTE designs to minimize environmental impact for cooling water intake structures that remain in operation. #### Policy or action Retiring of DTE coal-fired power plants reduces the need for cooling water intake structures, therefore mitigating fish and aquatic organism mortality. The Company continues to evaluate appropriate and alternative designs to minimize environmental impact for cooling water intake structures that remain in operation. #### Linkage or tradeoff Tradeoff ## Type of linkage/tradeoff Other, please specify (Conversion of farm land) # Description of linkage/tradeoff Renewable energy equipment, such as wind turbines and solar panels, requires considerable use of land, especially compared to traditional electric steam generating power plants. This has medium impact on the company and the environment; DTE aims to reduce habitat disruption and use land for other purposes as well. #### **Policy or
action** DTE develops wind parks for energy generation; turbines and service roads only require 3-5% of total land in the wind park. Additionally, wind turbines disrupt surrounding wildlife and habitat by causing noise pollution and habitat intrusion, specifically for birds and bats. The rest of the land is still usable for other purposes, such as farming or grazing. #### Linkage or tradeoff Tradeoff ## Type of linkage/tradeoff Decreased energy efficiency # Description of linkage/tradeoff Although more water efficient, closed-cycle cooling systems use circulating pumps and fans, which require additional energy to operate. This can potentially reduce net generation output. This has medium impact on the company and the environment; DTE plans to weigh the pros and cons at each site and implement closed-cycle cooling systems where it is energy efficient. #### **Policy or action** The DTE Greenwood facility uses a closed-cycle cooling system. As DTE considers implementing closed-cycle cooling in other facilities in the future, the Company plans to weigh the pros and cons at each site. Additionally, DTE has plans to develop new power generating stations that are more efficient, such as the Blue Water Energy Center. The combined cycle system will use less energy than traditional systems, allowing for reduced water use, as well as more efficient energy production. #### Linkage or tradeoff Linkage ## Type of linkage/tradeoff Other, please specify (Brownfield redevelopment; renewables) #### Description of linkage/tradeoff As DTE continues to increase renewable electric generation, the company will make a conscious effort to focus on developing solar fields on otherwise unusable land, such as impacted brownfields or developed urban environments. This has a high impact on the company and the environment because it minimizes the need for encroachment of valuable, undeveloped public lands. #### **Policy or action** The Company develops solar parks for large-scale power generation on brownfield sites, but also owns and operates smaller-scale solar arrays located on land owned by customers, including corporations, businesses, and municipalities. Continuing to do so minimizes the need for encroachment of valuable, undeveloped public lands. #### W10. Verification #### W10.1 (W10.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1d)? No, we do not currently verify any other water information reported in our CDP disclosure # W11. Sign off ## W-FI (W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored. N/A ## W11.1 (W11.1) Provide details for the person that has signed off (approved) your CDP water response. | | Job title | Corresponding job category | |-------|--|---| | Row 1 | Vice President, Environmental Management and Resources | Other, please specify (Vice President - Environment/Sustainability) | ## W11.2 (W11.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate's Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)]. # No # SW. Supply chain module # SW0.1 # (SW0.1) What is your organization's annual revenue for the reporting period? | | Annual revenue | |-------|----------------| | Row 1 | 1420000000 | # SW0.2 (SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP? Yes # SW0.2a # (SW0.2a) Please share your ISIN in the table below. | | ISIN country code | ISIN numeric identifier (including single check digit) | |-------|-------------------|--| | Row 1 | US | 2333311072 | # SW1.1 (SW1.1) Have you identified if any of your facilities reported in W5.1 could have an impact on a requesting CDP supply chain member? We do not have this data and have no intentions to collect it # SW1.2 (SW1.2) Are you able to provide geolocation data for your site facilities? No, not currently but we intend to provide it within the next two years ## SW2.1 (SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members. # SW2.2 (SW2.2) Have any water projects been implemented due to CDP supply chain member engagement? # SW3.1 (SW3.1) Provide any available water intensity values for your organization's products or services across its operations. # Submit your response In which language are you submitting your response? English Please confirm how your response should be handled by CDP | | Public or Non-Public Submission | I am submitting to | Are you ready to submit the additional Supply Chain Questions? | |-----------------------------|---------------------------------|--------------------|--| | I am submitting my response | Public | Investors | Yes, submit Supply Chain Questions now | | | | Customers | | # Please confirm below I have read and accept the applicable Terms CDP Page 57 of 57